
EXT: Shop System

Extension Key: tt_products

Copyright 2004-2008, Franz Holzinger <kontakt@fholzinger.com>

This document is published under the Open Content License

available from http://www.opencontent.org/opl.shtml

The content of this document is related to TYPO3

- a GNU/GPL CMS/Framework available from www.typo3.com

Table of Contents
EXT: Shop System......................................1

Introduction..2
Version...2
Translations..2
Upgrade..2
What does it do?..2
Screenshot...2
Developers...3
Sponsors..3
Support...3

Users manual..5
Note:...5
Mini-Basket:..5
Calculation script:...6
Discount:...6
Search link for the products of the last X days...........6
Offers and highlights..6
AGB General Trading Conditions...............................6
MEMO page ...6
Voucher System...6
Creditpoint System...6
Gift Certificates...7
Buy-a-Case...7
Using Product Articles (variants with new prices)......7

Administration..9
Installation..9
Handling of Categories...9

Handling of Images..9
Important..9
Template markers..10
Automatic creation of frontend users and address
fields...12
Product properties:...12

Configuration..14
FAQ..14
Files..14
Description..14
Reference...14
Display Modes (CODE)..22
CSS configuration..23
Configuration of Articles, Products, Categories,
Pages and Images...23
Form configuration...26
Basket configuration...26
Payment and shipping configuration........................26
Pricecalc, discountprice and creditpoints
configuration...29
payment_DIBS.php..31

Tutorial..32
Known problems..36

Checklist:..36
General:..36

To-Do list...36
Changelog...36

EXT: Shop System - 1

Introduction
You should read the German tutorial or the book 'Der TYPO3 Webshop', which contains many necessary hints for beginners,
before you start.

Version
This document is for version 2.6.0 of tt_products. The next version can be ordered from ttproducts.org and ttproducts.de .

Translations
A German translation of this document is available under the extension key doc_ttproducts_de. A French translation is under
development at doc_ttproducts_fr.

Upgrade
If you upgrade from Version 1.2.7 you have to do all the administrative steps under the topic 'Important'.

Starting with tt_products 2.7.0 PHP5 is a requirement.

What does it do?
The Typo3 shop extension gives you the facility for...

• Product listings with multiple images, details and languages

• Shopping basket

• Payment page - The orders will be indicated and can be checked over before the products are finalized.

• sponsors only: Payment gateways with Payment Library extension - Paypal and Transaction Central

• Tracking customers order status

• Automatic creation of bill and delivery sheet

• Different tax percentages per item, shipping and payment

• basic stock management

• Send a CSV for each order to the shop admin (2 choosable file formats)

• E-Mail-Attachments for the confirmation mails (for example AGB in German = General trading conditions)

• choosable item variants (colors, sizes, gradings, description, materials and qualities)

• Force customer to accept the General trading conditions (AGB) per checkbox

• Offers, highlights and newly added items

• Special preparation, weight and bulkily (can be used to calculate the shipping fee)

• Ability to limit payment methods to specific user groups

• Automatic creation of frontend users at first order

• Remember items in a memo, when a user is logged in

• Discount percentage per user

• Some methods for price calculation with rebate for resellers

• Display orders: order can be displayed on per fe-user basis (CODE=ORDERS)

• Creditpoint system: customers can save credit points per each order. Saved points will give them a discount for newer
orders or certain products can be "bought" with these points.

• Voucher system: if a new customer indicates when registrating that she/he was tipped by another existing customer, this
customers gets a credit point bonus. The new customer gets a discount on first order.

• Gift certificate: Users can buy certificates and send them as gifts to their friends. After signing on as front end users they
can transform their gift certificates into creditpoints.

Screenshot

EXT: Shop System - 2

Developers
– Kasper Skårhøj: 1st developer 1.2.7 / TYPO3 3.8

– René Fritz: 1st developer 1.2.7 / TYPO3 3.8

– Franz Holzinger (trainer): price calculation, discount price, gift certificates, e-mail table for notification, error correction,
billing, receipts, multi-column listings, product/articles tables, multiple languages, DAM list and category list

– Klaus Zierer (trainer of zk_products): more sizes and colors, entry lists, automatic registration of front-end users, category
pages. In zk_products you can find a good example shop template.

– Els Verberne: Credit point system and voucher system, Order lists

Sponsors
– The development of gift coupons was carried out by Franz Holzinger. It was sponsored by BENDOO e-work solutions of

the Netherlands (http://www.bendoo.nl). For more information contact BENDOO at hiddink@bendoo.com.

– The shopping of articles without attributes from a product, the category select box, the image naming using parts of table
field entries and of the DAM table, and the shipping setup using the static_countries and a credit cards table was carried
out by Franz Holzinger. It was sponsored by http://www.henrikjahn.de/ Germany. For more information contact Henrik
Jahn at jahn@henrikjahn.de .

– pil.dk - Professionelle Internet Løsninger ApS is a main sponsor of the code for the Payment Library extension.

– lightimaging images database - superb images of nature, royalty-free

– Multi-categories per product with multilingual listings, import scripts for XML files from inventory control systems, custom
shop tables, advanced search mask with producer select box, traffic light symbols to display the availability of articles.
Sponsored by Geo.net IT GmbH.

Support
You can get support and installation service for this extension at http://jambage.com/index.php?id=162 .

You can download all needed extensions from the TYPO3 TER, http://typo3.org or from http://jambage.com/index.php?
id=170 .

EXT: Shop System - 3

Users manual
Note:
The data path is renamed from 'pi' to 'pi1', thereby tt_products will now be put together like standard TYPO3 extensions. If
paths have been employed from previous versions of tt_products then these must now be renamed in TypoScript setup. If
you newly installl or update the extension, please observe the Depencies in TER (online repository of the extension
manager).

You must fill in the product's 'In Stock (pcs)' field of your product properties, or no item will be shown in your frontend list if set
to 0. This has been changed to the older version.

However, you should store the prices with included tax in the database; it makes it easier for you to reenter the price as well
as for the customer to see the prices as you entered them. These prices should finally have the convention of pricing like
89.99 and not 89.72.

Before you start entering the prices of your products you have to decide whether you want to enter the prices with or without
tax (see TAXincluded). All the calculations and configurations will use the prices as they have been stored into the price field
of the tt_products table.
You should use a template with multiple columns (displayBasketColumns=1 or higher) even if you only have one column in
the list table.

Use an example template from the directory tt_products/template, like the template, example_template_bill_de.tmpl, when
you start your shop. You have to change the page id in the links (after the 'id=...') to the page id of the basket on your site.
The marker ###DOMAIN### is the placeholder for your url. There are several placeholders for the different page ids of the
shop. This is sensible because different hosting environments will be used. In the setup of the shop templates, the domain
marker must become mydomain.com by using the following TypoScript : plugin.domain=mydomain.com).

tt_products is based on the Table Library (table) and FE/BE Library (fh_library). So you have to always update to the latest
versions of these extensions when you update tt_products.

If you want to use the variant fields (color, quantity ...), you must also set the constants 'selectColors' and 'selectSize' at 0 or
1. Otherwise, the count in the product list of articles will be calculated incorrectly.

Many adaptations can be undertaken by way of the constant editor. For entering in the shop page, most should be directed in
the template's setup field and constant editor.

Mini-Basket:
Beside the "normal" basket which shows a complete list of added products and some order options, there is also a "mini-
basket" which only shows the number of products in the basket and the total price. This shows or indicates the actualization
of the contents of the mini-basket displayed above the normal view (or as desired) while the process in shop steadily
continues. The progress of accumulation that the mini-basket indicates can be controlled via typoscript. To use this mini-
basket, insert a new content element "Plugin: Products" and in the display view insert 'Basket: overview' or if you use
typo3script set the CODE-field to OVERVIEW.

Use the following markers in your tt_products template to enable and customize this mini-basket:

Code Listing:

<!-- ###BASKET_OVERVIEW_TEMPLATE### begin -->
<div class="shop_minibasket">

<div class="shop_minibasket_image"><!--###LINK_BASKET###-->###IMAGE_BASKET###<!--
###LINK_BASKET###--></div>

<p>###NUMBER_GOODSTOTAL### Products (EUR ###PRICE_GOODSTOTAL_TAX###.-)</p>
<!-- ###BASKET_OVERVIEW_TEMPLATE### end -->

<!-- ###BASKET_OVERVIEW_EMPTY### begin -->
<p>No products in basket.</p>

<!-- ###BASKET_OVERVIEW_EMPTY### end -->
</div>

Calculation script:
If you write and use your own calculation scripts, then you should always use only the price variables. The priceTax and
priceNoTax variables will be deleted in August 2008 because they can be calculated from the price variables and the
TAXpercentage and TAXincluded constants.
You can use the global PHP variables $this->calculatedArray and $this->itemArray to make your own price calculations.

EXT: Shop System - 4

Discount:
There are several methods to get a discount.

1. Use the discount field for a frontend user and enter the percent of discount.

2. Use the price2 field for special feuser groups or other things. This setting is done in TypoScript via the IF-statement.

3. Use the discountprice calculation where the discount depends on the value of the total number of the products which
have a special price. This will be available for the frontend user group 'discountGroupName'.

Search link for the products of the last X days
This is practical for “What is new?” pages. Create simply a link to the SEARCH page and add "newitemdays" as parameters.
http://www.my-typo3-shop.com/?id=8&newitemdays=10

The search result will contain all the products of the last 7 days.
You have to use the plugin code LISTNEWITEMS. You can also set the constant "newItemDays".

Offers and highlights
You have to use the plugin code LISTOFFERS for the items marked as 'offer' and LISTHIGHLIGHTS for the newest items.

AGB General Trading Conditions
You have to accept the general trading conditions before you can make an order and continue with the process. A page can
be defined for this with "PIDagb". The AGBs have to be displayed there. You can set the target for a link by "AGBtarget".

A document (e.g. a PDF file) on the server containing the AGB can be set by "AGBattachment". This will be set to the
customer as an email with an attachment to the order confirmation. The shop administration will not get this file. (he can get a
CSV file of the order data instead, if wanted).

MEMO page
You can add items to a memo page when a user is logged in. This memo page will be saved in the fe_user table.

Simply create a new page with the Shop plugin as content and enter the code "MEMO". You must set the starting point there
too, like in the SEARCH pages.

Voucher System
An interested customer is obtained through invitation by e-mail to visit a shop and purchase products. This e-mail is attached
to a unique code which corresponds to a certain amount of credit points (voucher). When they make a purchase, they can
redeem these credit points by inputing the unique code.

If a customer states in his registration that he has been recruited by another customer, then the referring customer gets credit
points. The new customer gets a discount with his first order.

Somebody (lets say user 1) can enter a voucher code if he concludes an order. Then user 1 will obtain a discount. This credit
entry code undergoes a change with each different user name (which is the e-mail address). Let's say user 2 gets 5 credit
points altogether and applies his code to his purchase. Only one entry code out of a voucher system can be used by each
user. In fe_users table there is a field given for this "tt_products_vouchercode" which contains the used credit entry code (e-
mail of user 2).

Creditpoint System
If a customer purchases a certain number of items, then he gains credit points which are stored in his user's account. If he
purchases more items at a later time, he can redeem credit points against the purchase price. The customer can gather
credit points with each purchase.

creditpoints {
pricefactor = 0.5
10.type = price
10.prod.1 = 0.02
10.prod.101 = 0.04
10.prod.501 = 0.06
}

Gift Certificates
A shop manager can sell, for example, electronic gift certificates for wine bottles. A client may order a certificate that
corresponds to 50 credit points (=25 Euros) to send to someone as a gift. To redeem this gift certificate, then one must
register as a shop customer and input the certificate code. Thereby, haveing 50 credit points credited to his account. This
customer can purchase a particular product with these credit points.

Anyone can buy, for example:

• 3 certificates @ 25 credit points

• 5 certificates @ 50 credit points

EXT: Shop System - 5

• 8 certificates @ 75 credit points

...all within the same order.

Buy-a-Case
Wine will be sold in a shop, for instance. Normally, you sell a case of wine bottles (a case can contain 6 or 8 items). The
additional service, “buy-a-case”, gives the shop customer the potential to put together his own case of 6 bottles: for example,
2 red, 2 white, 2 rose. The special handling of bottles and cases will be calculated under the buy-a-case concept. The
handling per bottle will be calculated 1.50 Euro/bottle; likewise, the extra handling for 2 cases will amount to 2 x 6 x 1.5 = 18
Euros.

Using Product Articles (variants with new prices)
This example shows you how to have different sizes at different prices. The same procedure can be used with color and
other variants. Make sure 'Show secondary options (palettes)' is tagged, otherwise some of the fields will not be available.

1. In the TSSetup for the template add

plugin.tt_products.useArticles = 1
plugin.tt_products.selectSize = 1
If you are using columns to List your products like in the Bananaguard example, you also need

plugin.tt_products.conf.tt_products.LIST.displayColumns = 1
All this tells TYPO3 to read from the product articles and display a dropdown selection box if variants are used.

2. Add the parent product.
This is the primary information that is displayed in the frontend List and Single views, ie description, image etc.
Create a new entry in the Web > List mode. Select Product from the available options.
You will need to fill out the following fields:

• Title

• InStock (must have at least 1 to display in the frontend)

• Category (if applicable)

• Price (this should be the cheapest price for the cheapest size - corresponding to the cheapest product article
which we will set up next)

• Size (same applies for Color/Description/Grading if applicable)
This is crucial - in order for the frontend to be able to select a product variant you need to list all the size options
here first, separated by a semi-colon eg S;M;X;XL - this will correspond to the product articles we'll create next.

• Note

• Image

• Datasheet (if applicable).

3. Add the product variants.
Here we create the different sizes for the parent product. The information is pretty basic, you use to clarify different
prices, item numbers (for keeping track of stock), amount of stock etc. Each product variant must relate to one of
the sizes (or color etc) we listed in the parent product.

• Create a new entry in the Web > List mode.

• Select Product Articles from the available options.

• Fill out the Title (this will appear in the shopping basket) and

• Instock

• Price

If this variant is the cheapest version this should be the same as the price listed in the Parent
Product.

• Product

Very important, you need to select the parent product using the Element Browser, otherwise the
price will not be changed in the shopping basket when a size is selected

• Size (or Color, Grading is applicable)
This must correspond to one of the sizes that was listed in the Product Parent eg XL, if the
spelling is incorrect it will not work.

4. Changes to the html template.
This is the last thing to do.

• You'll need to add new fields to the ###ITEM_LIST_TEMPLATE### and ###ITEM_SINGLE_DISPLAY###.

• The Code Listing below for the variant selection box needs to be added and must sit inside of the form

EXT: Shop System - 6

tags. Also note that any information between ###display_variant1### or ###display_variant2### tags will
not be displayed if that variant is not used. This is a useful feature as we can use this to display or hide the
word 'From' before the ###PRICE_TAX### value by putting the ###display_variant2### tags either side,
giving us for example 'From $200' when $200 is the cheapest size (this is why the cheapest price is entered
in the product parent - by default the parent product price is displayed in the List and Single view, the
variant price is only displayed in the shopping basket once a size (or color etc) has been selected.) When
no variant options are available the word From is hidden.

Code Listing:

<!-- ###display_variant1### -->
Color:><SELECT name="###FIELD_COLOR_NAME###" rows="1">###PRODUCT_COLOR###</SELECT>
<!-- ###display_variant1### --><!-- ###display_variant2### -->
Size:><SELECT name="###FIELD_SIZE_NAME###" rows="1">###PRODUCT_SIZE###</SELECT>
<!-- ###display_variant2### -->

EXT: Shop System - 7

Administration
In the normal case the categories from the category table and its enhancements are used. You have to set

$TYPO3_CONF_VARS['EXTCONF']['tt_products']['pageAsCategory'] = 0

to be able to use them. Otherwise the pages will form the category and the category will be used as subcategory (=1) or not
used at all but replaced by the page (=2).

Activate now the flexforms in the backup. The code field will be replaced by a graphical user interface. However you have to
reenter all your code fields.

$TYPO3_CONF_VARS['EXTCONF']['tt_products']['useFlexforms'] = 1

Installation
Install the extension with the extension manager. If you already use an older version of tt_products that's installed in the
“global” location (typo3/ext/), it's recommended to install the new extension into the “local” folder (typo3conf/ext/) without
overwriting the old one. By doing this you can easily switch back to the former version.

Deinstall the extension from the Extension Manager. Then download the version of your choice from the Online Repository
with the Extension Manager.
Then use the Extension Manager's "Available extensions to install" and add the Shop system again.

This extension works best in union with static_info_tables, sr_feuser_register, rtehtmlarea and conf_userts.

Handling of Categories
There are multiple ways to create a shop. The usual way is to create sysfolders for the products and lists and single sites
where the products are displayed. If you want to do a bigger shop with TYPO3, this will become a little bit unhandy.

If you want to make bigger shops with hierarchical categories you shall install the mbi_products_categories and maybe also
the nsb_cat2menu extension. Sponsors will get an enhanced version of mbi_products_categories with which you can assign
many categories to one products via a mm-table. Only with this it will be possible to list DAM images.

Example of tt_products/ext_localconf.php:

$TYPO3_CONF_VARS['EXTCONF']['tt_products']['pageAsCategory'] = 0;

Handling of Images
There are ways to use and display the infos about images of the DAM extension.

Important
This should be fully downwards compatible to the former tt_products 1.2.7. But it needs some adaption to the template file. In
###BASKET_TEMPLATE### you must have the lines

<input type="hidden" name="mode_update" value="1">
<input type="Submit" name="products_update" value="update basket">

You have to rename the marker ###FIELD_NAME### to ###FIELD_NAME_BASKET### in the BASKET_TEMPLATE.

This is compatible with zk_products 1.3.2.

Some of the TypoScript settings do not function via the constants field and must be entered in the setup field. Only those
settings which can be found using the Constants Editor or in the file static/old_style/constants.txt are valid constants. You
must include the 'Shop System Old Style' into your 'static template records' of your TYPO3 template.

A negative value of a product at 'in stock' does not have any more a special function. This has been replaced by a checkbox
'always on stock'.

Change the former input fields for a search into

<INPUT size="30" maxlength="100" type="text" name="sword" value="###SWORD###">

The marker ###SWORDS### must be changed into ###SWORD###, and the name into 'sword'.

Template files
In your template files for the shop you need to make the following settings so it will work:

<input type="hidden" name="mode_update" value="1">

<input type="Submit" name="products_update" value="update basket">

Put this into your FORM-attributes of the BASKET_TEMPLATE.

Template markers
The following template markers for the tmpl-file are used. You have to put ### before and after them. There are more

EXT: Shop System - 8

markers, so look into the example template files.

area markers:

Marker: Description: Area:

BASKET_TEMPLATE top

BASKET_INFO_TEMPLA
TE

This is normally used to let people enter address information separately from
the real basket.
Exact same features as BASKET_TEMPLATE.

top

BASKET_ORDERCONFI
RMATION_TEMPLATE

the final page after the order has been processed. It will not be used for the
display, if PIDthanks is set. But this will always be used for the text in HTML
emails.
see: BASKET_ORDERTHANKS_TEMPLATE

BASKET_ORDERCONFI
RMATION_NOSAVE_TE
MPLATE

This HTML data will be added to the display after the order has been stored to
the database.

BASKET_ORDERTHANK
S_TEMPLATE

Used for displaying a thanks page, when PIDthanks is set. This will not be
used in the HTML emails.b
see BASKET_ORDERCONFIRMATION_TEMPLATE

BASKET_OVERVIEW_E
MPTY

message 'your basket is empty' for OVERVIEW

BASKET_OVERVIEW_TE
MPLATE

BASKET_PAYMENT_TE
MPLATE

BASKET_REQUIRED_IN
FO_MISSING

BASKET_TEMPLATE_EM
PTY

message 'your basket is empty'

BASKET_TEMPLATE_NO
T_LOGGED_IN

error message that the user has not logged in

BASKET_TEMPLATE_IN
VALID_GIFT_UNIQUE_ID

error message that a wrong unique id for a gift product has been entered

BILL_TEMPLATE how your bill file will look like

DELIVERY_TEMPLATE for the file of your delivery sheet

EMAIL_PLAINTEXT_TEM
PLATE

the email notification text
The first line is the subject.

EMAIL_NEWUSER_TEM
PLATE

email after creation of new frontend use

ITEM_LIST_TEMPLATE the listing of products on the starting LIST page

ITEM_LIST_GIFTS_TEMP
LATE

listing of the gift products

ITEM_SEARCH

ITEM_SEARCH_EMPTY

ITEM_SINGLE_DISPLAY

ITEM_SINGLE_DISPLAY
_GIFT

single display used when this is a gift product

ITEM_SINGLE_DISPLAY
_NOT_IN_STOCK

single display when item is not in stock

ITEM_SINGLE_DISPLAY
_RECORDINSERT

see displayCurrentRecord: render the $cObj->data

MEMO_TEMPLATE

MEMO_NOT_LOGGED_I
N

error message that use has not been logged in for MEMO

ORDERS_LIST_TEMPLA
TE

display of the order list

TRACKING_EMAIL_GIFT
NOTIFY_TEMPLATE

notification to the gift recipient in the order tracking

TRACKING_ENTER_NUM
BER

EXT: Shop System - 9

Marker: Description: Area:

TRACKING_WRONG_NU
MBER

single markers

Example for a wrap:

<!--###LINK_DATASHEET###> datasheet for the product <!--###LINK_DATASHEET###>

Marker: Type: Description: Area:

BROWSE_LINKS for browsing the display list over several pages

DELIVERYCOSTS value sum of delivery costs and payment costs

DELIVERY_...
NOTE
NOTE_DISPLAY
DESIRED_DATE

value see also PERSON_...
input field note for order
output field note with
 instead of linebreaks
desired delivery date of the order

BASKET_INFO_TEMPLATE

EXTERNAL_COBJECT value extra preprocessing Cobject

FIELD_NAME value in form the name of a field in a form

FIELD_NAME_BASKET value in form the basket data in encrypted format

GC1, GC2, GC3 value global colors all

GW1B, GW2B, GW1E,
GW2E

wrap global wraps all

PRICE_TAX
PRICE_NO_TAX
PRICE_ONLY_TAX
PRICE2_TAX
PRICE2_NO_TAX
PRICE2_ONLY_TAX

value price/price2 of the item with, without and only VAT ITEM_SINGLE

PRICE_TOTAL_TAX
PRICE_TOTAL_NO_TAX
PRICE_TOTAL_ONLY_T
AX

value total sum of the items with shipping and payment costs all

PRICE_GOODSTOTAL_
TAX
PRICE_GOODSTOTAL_
NO_TAX
PRICE2_GOODSTOTAL
_TAX
PRICE2_GOODSTOTAL
_NO_TAX

value total sum ot the items for price or price2 all

LINK_BASKET wrap link to the basket page basket

LINK_DATASHEET wrap link to the datasheet file in uploads/tx_ttproducts/datasheet

ORDER_STATUS_TIME,
ORDER_STATUS,
ORDER_STATUS_INFO,
ORDER_STATUS_COM
MENT

value order values TRACKING_DISPLAY_INFO

PERSON_...
NAME,
ADDRESS,
TELEPHONE,
FAX,
EMAIL,
COMPANY,
CITY,
ZIP,
STATE,
COUNTRY

value address information fields
have to be connected with a prefix
PERSON_... the customer of the order
DELIVERY_... the recipient of the order

PID_TRACKING value the tracking pid

STATUS_CODE_60 wrap used to allow the disappearance of the text with status code
by the shop

TRACKING_DISPLAY_INFO

STATUS_OPTIONS value Select menu of state options ADMIN_CONTROL inside
TRACKING_DISPLAY_INFO

SHOPADMIN_EMAIL value Email-Address of the shop admin all

EXT: Shop System - 10

Automatic creation of frontend users and address fields
It is possible to create frontend users automatically after each order. You have to set "createUsers" to "1", enter the PID of
the sysfolder as PIDuserFolder in the Setup field. Then you have to set memberOfGroup to the ID of your frontend user
group.
The customer will get an email with his account data after his first order. This email will contain his account name which is his
email address, and his automatically created password.

If you do not want to use a single address field, but the address field for the name of the street and the housenumber and
additional fields for the ZIP, city and country, then you have to set these in your template file. If you install static_info_tables
and set “useStaticInfoCountry=1” then the small field static_info_country of the fe_users will be used instead of country. This
is useful to make a select box for the country.

Product properties:

Color, Size, Additional and Gradings
To enter variants of products you have to separate the values by a semicolon. So for t-shirts with different color and size
enter "red;green;blue" in variant1 and "S;X;XL;XXL" in variant2.
Color (Variant 1) and Size (Variant 2): enter here values with title and values separated by semicolon ';' like

M;L;XL;XXL

Change the template to support this:

<!-- ###display_variant1### -->
###GW2B### Color: ###GW2E### <SELECT style="font-size: 10px"
name="###FIELD_COLOR_NAME###" rows="1">###PRODUCT_COLOR###</SELECT>

<!-- ###display_variant1### -->
<!-- ###display_variant2### -->
###GW2B### Size: ###GW2E### <SELECT style="font-size: 10px"
name="###FIELD_SIZE_NAME###" rows="1">###PRODUCT_SIZE###</SELECT>

<!-- ###display_variant2### -->

If you do not make colors or size selectable, you have to set selectColor or selectSize to 0 and only use the
###PRODUCT_COLOR### and ###PRODUCT_SIZE### markers and within the template itself delete the corresponding
###display_variant### marker. You can, however, use markers as representations of the colors, also if no different colors
can be chosen.

The field name of all the fields in the list view and the basket view will be addressed with the marker ###FIELD_NAME###.
The markers will be internally replaced in shop through a field name with which the field can be chosen and attributed
correctly.

When you have products with different mixes of colors, sizes, and gradations, then you must replace the notation
###FIELD_NAME#### in the field BASKET_TEMPLATE with the notation ###FIELD_NAME_BASKET###.

In the list view of the web module, you can now complete the readily available items with the variant, for example color. For
that purpose, you select the table product article.

You must set useArticles=1 in the template setup in order to apply the article attributes/properties.

When you have prepared products, having arranged product qualities of different color, you use only one article number and
one price, etc. for this product. However, when you need, for example, different colors, different article numbers, and perhaps
prices, etc then this arrangement occurs in the article property (web module, list, product article table). The advantage is that
you do not need to create a completely "new" product. The default quality will be transmitted. You only give the color a new
article number and a new price. All other product statements will be accepted. Leave a field empty so the default product
quality field content will be accepted.

It makes a differene, if an article with different colors or sizes in the product list or shopping cart can be selected. A color or
size normally will be chosen by way of a selection box. The quantity for the first color/size will be indicated in the product list.
The products in all variables will be, however, individually listed. The lists of products in the basket and in the payment page
are, therefore, nearly the same, but will be handled otherwise/differently. You must deactivate selectSize and selectColor
whenever you do not want to have selection boxes in the product list.

Weight, bulk and special preparation
Each product can have weight (kg) and bulkily (Yes/No). The total weight is calculated and can be used in the price
calculation for the shipping costs.

If an item has been marked as 'bulkily' then a warning message will be displays ('bulkilyWarning' in setup). By setting
'bulkilyAddition' in setup you can add an additional shipping price for this bulkily item.

Special preparation does generally not have a function. Only a marker (like with BulkilyWarning) will be written. You can set
here a link to the mail form page.
Example:

EXT: Shop System - 11

specialPreparation = special preparation is possible!
Order here.

Basic stock management

The field inStock can be used for a stock administration. If "in stock" is at "0", the item will not be visible for the customers
any more.
After each order the number of the ordered items will be erased from "in stock".

If a new item gets created, its number will be set to '1' by default. If you have set 'alwaysInStock=1' then this item will always
be available and visible. Otherwise the number of products will be reducted with each order.

You can fill in the checkbox for each product to have it always in stock.

You can define the unit on the store by "inStockPieces" like "pieces".

Several tax rates

Each item can have its own tax. But you have to enter this separately for each item.

EXT: Shop System - 12

Configuration
FAQ
– If you do not use the Constant Editor to configure the extension, please note the form of the constants assignments in the

constants section of your TS template:

plugin.tt_products {
 property = value
}

Files
File: Description:

class.tx_ttproducts.php Main class used to display the product list or the shopping basket.
Call it from a USER cObject with 'userFunc = user_products->main_products'

products_comp_calcScript.inc Example 'calculationScript'

products_template.tmpl
products_template_htmlmail.tmpl

Example templates in English.
'.._htmlmail.tmpl' is a HTML-wrap for the HTML-emails sent.

products_template_dk.tmpl Example template in Danish

example_template_bill_de.tmpl bananaguard.de template with examples for bill and delivery sheet in German

products_template_fi.tmpl Example template in Finnish

products_template_fr.tmpl Example template in French

products_template_se.tmpl Example template in Swedish

product_detail.tmpl
product_proefpakketten.tmpl
shop-a-box.tmpl
producten.tmpl

Example templates for gift certificates, creditpoints and voucher system in Dutch

products_css_en.html CSS styled template. Use this if you need a barrier-free shop.

'handleScripts' for interfacing with external payment gateways

payment_DIBS.php Script for interfacing with DIBS (Danish Internet Payment System) in Denmark. You can reach them at
http://www.architrade.com/uk/.

payment_DIBS_template.tmpl Template file for DIBS payment.

[tsref:(cObject).TEST]

Description
Built-in shopping basket and products display within TYPO3. Has a clearing interface which lets you write your own
implementation with existing payment-gateways.

Currently there's an implementation with DIBS in Denmark, found at www.architrade.dk .

Reference
Property: Data type: Description: Default:

templateFile
Constants:
file.templateFile

resource The template-file.
See example in 'tt_products/template/products_template.tmpl'
You can also specify a CODE.
(siehe display mode)
Example:
plugin.tt_products.templateFile =
EXT:tt_products/template/example_template_bill_de.tmpl
plugin.tt_products.templateFile.LIST = EXT:tt_products/
template/products_template_dk.tmpl

pid_list string /stdWrap The pids from where to fetch categories, products and so on. Default is
the current page. Accepts multiple pid's separated by comma.

defaultCode string The default code (see below) if the value is empty. By default it's not set
and a help screen will appear. You should not set anything here.

Example:
plugin.tt_products.defaultCode = HELP

code string /stdWrap see chapter 'display mode' HELP

defaultArticleID int+ The default article uid number for the single display is used when the link
to the script did not contain a 'tx_ttproducts_pi1[article]' parameter.

EXT: Shop System - 13

Property: Data type: Description: Default:

defaultProductID int+ The default product uid number for the single display is used when the
link to the scnotript did not contain a 'tx_ttproducts_pi1[product]'
parameter.
Set this default value when you get an error message like:
“GET/POST var 'tx_ttproducts_pi1[product]' was missing.”

defaultCategoryID int+ The default category uid number for the list display is used when the link
to the script did not contain a 'tx_ttproducts_pi1[cat]' parameter. Use this if
you want only products of this category displayed in the list view as a
default.

defaultDAMCategoryID int+ See defaultCategoryID, but for DAM categories and the
'tx_ttproducts_pi1[damcat]' parameter.

rootCategoryID int+ The upper most category ID from where you want to start to list
categories.

rootDAMCategoryID int+ The upper most DAM category ID from where you want to start to list
DAM categories.

rootPageID int+ The upper most page ID from where you want to start to list them as
categories.

recursive int+ Number of recursive sublevels of pids to select tt_products from in lists. 99

domain string The url of the shop. If not set, it will be detected automatically. Will
replace ###DOMAIN### markers.

altMainMarkers (array of strings) Lets you specify alternative subpart markers for the various main template
designs in the shopping basket system.
This is the list of main subparts you can override:
Properties:
TRACKING_WRONG_NUMBER
TRACKING_ENTER_NUMBER
BASKET_REQUIRED_INFO_MISSING
BASKET_TEMP
ITEM_SINGLE_DISPLAY_RECORDINSERT
ITEM_SINGLE_DISPLAY
ITEM_SEARCH
ITEM_LIST_TEMPLATE
ITEM_LIST_GIFTS_TEMPLATE
ITEM_SEARCH_EMPTY
BASKET_TEMPLATE
BASKET_INFO_TEMPLATE
BASKET_PAYMENT_TEMPLATE
BASKET_ORDERCONFIRMATION_TEMPLATE
EMAIL_PLAINTEXT_TEMPLATE
BILL_TEMPLATE
DELIVERY_TEMPLATE

/+ stdWrap

Example:
altMainMarkers.BASKET_TEMPLATE = BASKET_DESIGN2
altMainMarkers.BASKET_TEMPLATE.wrap = ### | ###

This example changes the main subpart marker for the regular basket
display from the default ###BASKET_TEMPLATE### to the custom
supplied design ###BASKET_DESIGN2### (found in the same template
HTML-file)

stdSearchFieldExt list of fields Search fields
Default internal list is title,subtitle,note. You can specify your default fields
here.

limit int+ Max items displayed. The maximum number of items displayed on one
page.

50

limitImage int+ Max image items displayed. The maximum number of images for one
item displayed on the list view.

1

limitImageSingle int+ The maximum number of images for one item displayed on the single
view.

1

usePageContentImage boolean Deprecated. See Article/Product configuration
Use this instead:
plugin.tt_products.conf.tt_products.ALL.fetchImage {

type = foreigntable
table = tt_content

}

separateImage boolean Normally all images are displayed together. With separateImage=on you
can use a ###PRODUCT_IMAGE3### for each image number (starting
with 1) separatly.

image IMAGE cObject The image configuration in single display

EXT: Shop System - 14

Property: Data type: Description: Default:

listImage IMAGE cObject The image configuration in list display

listImage >
listImage {
altImgResource.import = uploads/media/
altImgResource.import.field = media
altImgResource.import.listNum = 0
altText.data = field:title

}

That way, attached images are not copied to and displayed from
/typo3temp/ (which gives trouble with transparant backgrounds) but
directly linked from /uploads/pics/.
The line with altText leads to the drawing of an alternative text.

listImageHasChilds IMAGE cObject DAM only:
The image configuration in list display if there is a filter for a category on
the page and this category has childs.

listImage >
listImage {
altImgResource.import = uploads/media/
altImgResource.import.field = media
altImgResource.import.listNum = 0
altText.data = field:title

}

see listImage

basketImage IMAGE cObject The image configuration in basket display

datasheetIcon IMAGE cObject The image icon for the datasheet. Replaces ###ICON_DATASHEET###

basketPic string URL link to the basket image

clickIntoBasket boolean If set you will be directed into the basket page after putting a product into
the basket. This only works if PIDbasket has been set.

clickIntoSubmenu boolean If set, the submenues in the LISTCAT category list will only be listed for
the current category.

basketMaxQuantity int+ / string The maximum integer value for the quantity of an item in the basket.
'inStock': Only the number of items which are currently in stock can be put
into the basket.

100000

quantityIsFloat boolean If set the basket count can be a float value.

noImageAvailable resource The image file displayed if no image was attached to a product. This
image is processed by the IMAGE cObject which is active in the actual
display of that image. That is, one of the above IMAGE cObjects.

displayListCatHeader boolean Display Category Header in list
If this option is set, the category headers (page titles) will automatically be
displayed in the product lists. This is not always convenient because you
might have chosen a header-title for the "list" content element.

1

displayBasketCatHead
er

boolean Display Category Header in basket.
If this option is set, the category headers (page titles) will automatically be
displayed in the basket lists.

0

displayCatListType string Define the HTML main tag for the display of the categories in the category
list view.
possible values:

• ul
• null

ul

EXT: Shop System - 15

Property: Data type: Description: Default:

displayBasketColumns int+ Deprecated. see table configuration: displayColumns

Number of columns for the LIST, SEARCH listing of items in a table. You
have to adapt your template using special template markers. The
ITEM_SINGLE_PRE_HTML and ITEM_SINGLE_POST_HTML must
surround your <TD>-</TD> tags, so the table will be created correctly.

Example:
<!-- ###ITEM_SINGLE### begin-->
###ITEM_SINGLE_PRE_HTML###
<TD height="150" bgcolor="###GC1###" valign="bottom"
align="center">
<!--###LINK_ITEM###-->
###GW1B######PRODUCT_TITLE######GW1E###
<!--###LINK_ITEM###-->

###PRODUCT_IMAGE###

###GW1B### item count: ###GW1E### <INPUT size="3"
maxlength="4" type="text" name="###FIELD_NAME###"
value="###FIELD_QTY###">
<p> </TD>
###ITEM_SINGLE_POST_HTML###
<!-- ###ITEM_SINGLE### end -->

CSS see below Cascading Stylesheets settings

conf see below configurations of the tables

NoSingleViewOnList boolean Usually you get the link to the single item view on the display page of the
LIST code. If you however want to create your own pages for single view
with SINGLE code you must set this to 1.

itemMarkerArrayFunc function-name Every time a product is displayed be it in the basket, list or single view,
the method getItemMarkerArray() in tx_ttproducts_marker is called. This
function fills in and returns an array, so called markerArray(), with
key/values for template substitution.
If you enter a valid function name here (see datatype 'function-name' for
details!) that array will be passed to that function as the second
parameter. The first parameter will be the TypoScript properties to
itemMarkerArrayFunc.

Parent PHP-Object reference:
.parentObj property is hardcoded to be a reference to the calling
user_products object (PHP).

Example:
(provided that a function or class is included!)

itemMarkerArrayFunc = user_addFieldsMarkerArr
itemMarkerArrayFunc.simpleOption = 1

PIDitemDisplay int+/Array of
integers

PID for single item display.
If you want a certain page to be used for display of item details, please
enter the PID (page-uid) here. If you set the type to sql, you can use
conditions using several lines. The where string can contain the AND
condition. The pid for the first fulfilled condition will be returned.

PIDitemDisplay {
10.type = sql
10.where = color=red
10.pid = 142
20.type = sql
20.where = color=white
20.pid = 143
}

If you set the type to pid then the pid of the record will be used.
PIDitemDisplay {
10.type = pid
}

PIDlistDisplay int+/Array of
integers

PID for the item list display
Similar to PIDitemDisplay, however the category table is used here.

PIDsearch int+ PID for search page.
If you want all product searches to go to a specific page, enter the PID it
here! NOTE: If you set this PID, all searchqueries will (must) be handled
with a list content element with the display mode "Products: search" on
that page.

PIDbasket int+ PID for the basket page.
If you want ever change the number of items anywhere to go to a specific
page (eg. the shopping basket page), enter the PID here.

EXT: Shop System - 16

Property: Data type: Description: Default:

PIDstoreRoot int+ PID for store root.
This is the PID of the rootPage of the store. If not set the store will
operate over all pages from the root of the site. But if the site has many
pages, performance may improve.
You should better set pid_list instead of it.

PID_sys_products_ord
ers

int+ PID for the sys_products_orders records. By default they will get the pid
of the payment (finalize) page.

PIDGiftsTable int+ PID for the tt_products_gifts table. The gift orders are stored here.

PIDinfo int+ PID for the info page where name and address is entered.

PIDfinalize int+ PID for the finalization page afther the user has confirmed the order data.
The order will get stored here.

PIDthanks int+ PID for the thanks page. BASKET_ORDERTHANKS_TEMPLATE will be
used. You must not set PIDfinalize if you use this.

PIDtracking int+ PID for the order tracking

PIDbilling int+ PID for the generation of the bill

PIDdelivery int+ PID for the generation of the delivery sheet

PIDmemo int+ The ID of the memo page

PIDagb int+ The PID of a page with the general trading conditions (“AGB” in germany)
Only if this page id is set the AGB check will be active. 0

PIDuserFolder int+ The sysfolder, where the new users should be stored 116

pidsRelatedProducts int+ Allowed pages for related products.

paymentActivity string When the payment with a payment script shall be executed.
Possible values: payment, finalize

finalize

advanceOrderNumber
WithInteger

int+ If this value is set, then each time a new order is created the order-
number counter will be incremented with a random number between [first-
integer] and [second integer] to cheat a little.

Example:
1,10 (This will increment the counter randomly
between 1 and 10)
5,5 (This will increment the counter with 5 each
time)

alwaysAdvanceOrderN
umber

boolean If set then the order number will always get increased and the empty order
numbers are not reused. You have to set this if you use a payment script
to pay via a payment system which does not accept duplicate order
numbers.

alwaysUpdateOrderAm
ount

boolean If set then the entered order amount will always be updated and not
increased by the entered number.

1

parseFunc ->parseFunc

not used with
'CSS styled
content'

If the extension 'CSS styled content' has been installed, you have to make
your settings in lib.parseFunc_RTE and not here.
The product details are parsed by these properties. So if e.g. you want ot
allow HTML-tags to create a table in the Note field you have to set the
parseFunc.allowTags or use the denyTags.
To make RTE working with HTML you have to set the following into the
root page template.

Example:
keepNonMatchedTags = 1
RTE.default.proc.preserveTables = 1

Example:
parseFunc.allowTags =
table,tr,td,b,i,u,a,img,br,div,center,pre,font,hr,sub,s
up,p,strong,em,li,ul,ol,blockquote,strike,span,h1,h2,h3
,h4,h5,h6
parseFunc.denyTags = *

styles.content.par
seFunc

categoryHeader cObject Generates the category header.

Example:
categoryHeader = TEXT
categoryHeader.current = 1

TAXpercentage double Sales TAX/VAT percentage.
Double value (!) (means, "use . as decimal point")

Example:
Danish sales TAX is 25%:
TAXpercentage = 25.00

EXT: Shop System - 17

Property: Data type: Description: Default:

TAXincluded boolean Set this, if TAX is included in the database prices! (... and of course:
Clear this, if TAX is not included in the database prices and should be
added in the display of items)
All processing will take this flag into account and calculate prices
accordingly.

1

TAXmode int+ tax mode
1: The net sums are added first. The tax is added on the final total net
sum.
2: The gross price is calculated for every product. The total sum is
calculated on the single gross prices.

1

priceDec int+ Price decimals

priceDecPoint string Price decimal point

priceThousandPoint string Price Thousand point
Enter the thousand separator, if any.

priceNoReseller int+ Price number for reseller, which can only be 2 at the moment. The price2
will however only be taken when its value is greater than 0. Here is the
way to get the price2 for a special user group:

Example:
[usergroup = 1]
priceNoReseller = 2
[global]
...

currencySymbol string Currency symbol. Used in shop administration.

Example:
EUR
DKR
USD
$

lockLoginUserInfo boolean If set and a user is logged in, the address info of that fe_user gets filled in
as billing address of the user. It is not possible to change this data.

editLockedLoginInfo boolean If set and lockLoginUserInfo is set, then the filled in data is still editable for
the order. You have to set the input HTML tags for this.

loginUserInfoAddress boolean If lockLoginUserInfo is set, this switch makes that the address field is
filled in from address, country, zip and city of the fe_user

requiredInfoFields list of string List of the fields which are required in the address information This
example gives you all possibilities.

Example:
requiredInfoFields =
name,address,telephone,fax,email,company,city,zip,state
,country

orderBy string Deprecated. See Article/Product configuration
Use this instead:
plugin.tt_products.conf.tt_products.ALL.orderBy = title

orderByCategoryTitle boolean Deprecated. Use this instead:
plugin.tt_products.conf.tt_products_cat.ALL.orderBy =
title

orderByItemNumberSg boolean If the single item display should be sorted by ItemNumber instead of uid;
used for ###LINK_NEXT_SINGLE### and ###LINK_PREV_SINGLE###

orderNumberPrefix string Prefix to the order numbers. Max 10 chars. If this string starts with '%'
then the rest will be interpreted as a PHP date format.

orderEmail_from string From email address for the confirmation email to customer

orderEmail_fromName string From name for the confirmation email to customer.

orderEmail_to list of email-
addresses

Comma separated list of recipients of the order email. Shop and
administrator/supervisor email addresses go here!

orderEmail_toDelivery boolean If set, the email notification will be sent to the delivery email address and
not to the billing email address.

orderEmail_subject string Contents of the subject line if the first line in
###EMAIL_PLAINTEXT_TEMPLATE### is empty.

orderEmail_htmlmail boolean / string If set, the order confirmation email is sent as HTML
If orderEmail_htmlmail.removeImagesWithPrefix is set, then the images
and their HTML tags will not be sent in an email.

email_notify_default boolean If email-notification to the delivery email address of the customer is
enabled by default for tracking (he can change it himself in the tracking
module later)

EXT: Shop System - 18

Property: Data type: Description: Default:

statusCodes Array of integers Status codes used in the tracking module.
Numbers above 100 removes the order from the tracklist.
Number zero is the status of a non-finalized order (and non-finalized
orders in the database may by time be regarded as garbage...)
Numbers of 50-59 is available for the customer to choose from.
Number 1 is reserved to be selected when an order goes from zero to 1
because it's confirmed. Number 1 cannot be selected by shop admin.
These will be written into ###STATUS_OPTIONS### markers.

Example:
statusCodes {

1 = Order submitted by user
2 = Order is received and accepted by store
10 = Shop is awaiting goods from third-party
11 = Shop is awaiting customer payment
12 = Shop is awaiting material from customer
13 = Order has been payed
20 = Goods shipped to customer
21 = Gift certificates shipped to customer
30 = Other message from store
50 = Customer request for cancelling
51 = Message from customer to shop
60 = Send gift certificate message to receiver
100 = Order shipped and closed
101 = Order closed
200 = Order cancelled

}

update_code string The 'password' used by the administrator of the shop to go into the
tracking system in the front end.
The password form field will appear if a BE_USER is logged in, but this
password is still needed.

password

statusDate_stdWrap ->stdWrap stdWrap for status date

Example:
statusDate_stdWrap.strftime = %d-%m-%Y %H:%M

orderDate_stdWrap ->stdWrap stdWrap for the order date

Example:
orderDate_stdWrap.strftime = %d-%m-%Y

displayCurrentRecord boolean If set, certain settings are manipulated in order to let the script render a
single item - the $cObj->data.
If this setting is set, the subpart marked
###ITEM_SINGLE_DISPLAY_RECORDINSERT### will be used instead
of the regular subpart ###ITEM_SINGLE_DISPLAY### if it is found.

externalProcessing cObject This cObject may be used to call a function which manipulates the
shopping basket. This manipulation could be based on settings in an
external order system. The output is included in the top of the order
(HTML) on the basket-page.
This cObject is executed each time the main_products method of the
user_products class in productsLib is called and it's executed before any
of the main processing. See the class for details.

externalProcessing_fin
al

cObject cObject for the final order confirmation template

externalFinalizing cObject This cObject may be used to call a function which clears settings in an
external order system. This is a sister to the above function and they
should probably be used in conjunction somehow. This function is called
immediately after the finalize-function has been called.
For instance this function would be suitable for clearing any external
basket facilitated by the .externalProcessing cObject
Note: The output is NOT included anywhere.

wrap1 -> stdWrap Global Wrap 1. This will be splitted into the markers ###GW1B### and
###GW1E###. Don't change the input value by the settings, only wrap it
in something.

Example:
wrap1.wrap = |

wrap2 -> stdWrap Global Wrap 2 (see above) markers ###GW2B### and ###GW2E###

selectColor boolean If true the color of a product is selectable in a select box. 1

selectColor2 boolean If true the 2nd color of a product is selectable in a select box. 1

selectSize boolean If true the size of a product is selectable in a select box. 1

selectSize2 boolean If true the 2nd size of a product is selectable in a select box. 1

selectDescription boolean If true the decription of a product is selectable in a select box. 1

EXT: Shop System - 19

Property: Data type: Description: Default:

selectGradings boolean If true the gradings of a product are selectable in a select box. 1

selectMaterial boolean If true the material of a product are selectable in a select box. 1

selectQuality boolean If true the quality of a product are selectable in a select box. 1

color1 string /stdWrap Value for ###GC1### marker (Global color 1)

color2 string /stdWrap Value for ###GC2### marker (Global color 2)

color3 string /stdWrap Value for ###GC3### marker (Global color 3)

nl2brNote boolean If true the linefeeds in the note field are replaced by
. 1

useArticles integer
• 0: If you do not want to use the articles table then this must

remain 0.
• 1: If you want to use products in different variants and have

special prices for them in the articles table, then you have to set
this to 1. The instock of the articles table will be used instead of
the products table.

• 2: Like 1 but you do not need to have corresponding fields for
the variants between a product and its articles.

priceTagObj IMAGE cObject Image for the display of the price

usePriceTag boolean If true, the priceTagObj will be used. If false, the text will be displayed. 0

useStaticInfoCountry boolean If true the short fe_user static_info_country field will be used for country
instead of the country field.

0

whereGift string This SQL where clause defines which products will be treated as gifts.

max_note_length int+ In the list view: The item note will be cut after max_note_length
characters, and three dots are added...
This can be dangerous if you use html in your product notes, because a
tag could stay open and the following items look ugly 100

specialPreparation string This text will substitute your ###PRODUCT_SPECIAL_PREP###
markers.

createUsers Boolean If you set this and PIDuserFolder, for each customer that is not logged in
and his email address is not listed as user already, a new frontend user
will be created.
An email with the username (his e-mail address) and the password will be
sent to him (see ###EMAIL_NEWUSER_TEMPLATE###) 0

outputFolder string Folder where the bill and delivery sheets are created. fileadmin/data

memberOfGroup int+ The ID of the frontend user group, the new users should be member of 1

discountGroupName string Name of the group for discount pricecalculation

getDiscountPrice boolean If set the discount price will be used even for normal customers without
having a frontend user in the discount group.

AGBtarget Small The target for the PIDagb link _blank

AGBattachment Resource If this file exists, it will be attached to the order confirmation email to the
customer. The shop administrator won't receive the agb attachment, but
the CSV if you enable it

fileadmin/agb.pdf

GiftAttachment Resource If this file exists, it will be attached to the order gift email to the customer.

generateCSV boolean Generates a CSV from each order. This file will be saved on the server
and sent to the shop administrator per email (with the order confirmation) 0

CSVdestination ../csvorders/ The directory on the server, where the CSV files should be saved. This
directory should not be accessible over http, because everyone can read
your customers and their orders.
So don't put this directory unter fileadmin, or rename it to something
cryptical at least.

../csvorders/

CSVfields string Select which product data should be added to the CSV. By default these
are all important fields except the note

(Long, long list)

CSVinOneLine boolean If you set this to 1, all additional information (shipping, payment, address
data, delivecatry note) will be appended to the first ordered item. This is
good if you want to import this files somewhere.
If you leave this at 0, the file will be formated for best view in programs
like Excel. 0

CSVnotInEmail boolean If set no csv file will be appended to the email.

alwaysInStock boolean If set the stock will not get reduced if something has been bought. 1

showNotinStock boolean If set the items will be shown even if no product is in the stock.

notInStockMessage string See above. This will be shown if no items are in stock and
showNotinStock is set.

Not in stock

EXT: Shop System - 20

Property: Data type: Description: Default:

warningInStockLimit int+ Amount of items in stock at which when reached a warning message is
sent.

inStockPieces string This is the unit for items inStock. pieces

newItemDays int+ In LISTNEWITEMS, the newly added items of the last n days will be
showed 7

bulkilyWarning string Text for ###BULKILY_WARNING### for bulky products

bulkilyAddition int+ Factor to multiply with a product which is bulkily

bulkilyFeeTax int+ Tax fee in percent for shipping of bulkily

javaScript array of integers Some JavaScript which will be included for ###JAVASCRIPT_10###
markers.

Beispiel:
javaScript {

10 = function addValues (a, b) { return a+b; }
20 = function multiplyValues (a, b) { return a*b; }

}

payment / shipping (see below) Configuration of payment and shipping methods, their values and costs
and additional calculation scripts and payment gateways.
See description below!

[tsref:(script).class.tx_ttproducts_pi1.php]

Display Modes (CODE)
Here comes a list of the possible display types of the plugin.

Code to define, what the script does. In the backend these entries are made using flexforms instead of the Codes (capital
letters). Use the codefields ony in TypoScript setup.

Display Mode: CODE: Description:

Products: list LIST listing of the products

Products: list gifts LISTGIFTS listing of gifts

Products: list highlights LISTHIGHLIGHTS listing of the products marked as highlights

Products: list offers LISTOFFERS listing of the products marked as offers

Products: list new items LISTNEWITEMS listing of the new items entered to the sysfolder

Products: list DAM LISTDAM list DAM images or media files

Products: single view SINGLE single view of an article (LIST code can be
used also) or GET/POST var 'tt_products' can
be set.

Products: search SEARCH displays a search dialog for searching product

Currency: selector CURRENCY currency selector

Basket: content BASKET Displays the shopping basket.
The code 'BASKET' works in general but using the specific codes INFO,
PAYMENT and FINALIZE, you can split out the function over
multiple pages

Basket: overview OVERVIEW a minimum basket containing only the number
of items

Basket: input customer data INFO enter address information

Basket: control and payment PAYMENT last check and payment gateway

Basket: finalize order FINALIZE finalize the order and send emails – thanks page for the order

Orders: tracking TRACKING to track the order state, bill and delivery

Orders: bill BILL creates a file containing the bill

Orders: delivery DELIVERY creates a file containing the delivery sheet

Orders: list ORDER display orders on per fe-user basis

General: memo MEMO memo of products for frontend users

General: help HELP information how to use tt_products

Categories: list LISTCAT listing of categories

Categories: select SELECTCAT categories inside of select boxes

Categories: DAM list LISTDAMCAT listing of DAM categories

Articles: list LISTARTICLES listing of articles

EXT: Shop System - 21

CSS configuration
The CSS id names can be set here. You have to provide a CSS file that will use these ids however.

You have to provide also the name of the table in the setup.

The last but one/two value will be the name of the view. It can be 'ALL', if it is valid for all views..

Views correspond to the code field:

SINGLE, LIST, BASKET

plugin.tt_products.CSS.tt_products.LIST.row.even = 35

Property: Data type: Description: Default:

row even: Cascading Stylesheets (CSS) even rows in the products display.
uneven

list default: CSS for default entries in a list view.
current: CSS for the currently selected item a list view.

menu string CSS for the menu

itemSingleWrap wrap HTML part to replace the markers ###ITEM_SINGLE_PRE_HTML###
and ###ITEM_SINGLE_POST_HTML### at single item level.

<div>|</div> or
<td>|</td>

itemRowWrap wrap HTML part to replace the markers ###ITEM_SINGLE_PRE_HTML###
and ###ITEM_SINGLE_POST_HTML### at item row level.

empty or <tr>|
</tr>

Configuration of Articles, Products, Categories, Pages and Images
The last but one/two value will be the name of the view. It can be 'ALL', if it is valid for all views..

Views correspond to the code field:

SINGLE, LIST, BASKET

additional possible values are

EMAIL, PAYMENT

Example:
plugin.tt_products.conf.tt_products_articles.LIST.generatePath.base = fileadmin/images
plugin.tt_products.conf.tt_products.LIST.orderBy = sorting

Property: Data type: Description: Default:

generatePath array of string path to the image folders where the images for generateImage are
located.

Pairs of field names and the count of the first characters to be used to
form the name of the image file.
type ... tablefields
fieldname ... name of the table field

Example:
ALL.generatePath {

type = tablefields
base = fileadmin/images
field.itemnumber = 2

}

fileadmin/img

generateImage array of string Pairs of field names and the count of the first characters to be used to
form the name of the image file.
type ... tablefields, foreigntable (for field of another table)
field.fieldname ... name of the table field
table ... use another table and its configuration to get the image
uid_local ... use the value of this local field of the current table
uid_foreign ... use this field of the foreign table to find a match

Example:
ALL.generateImage {

type = tablefields
field.itemnumber = 6

}

ALL.generateImage {
type = foreigntable
table = tt_products_articles
uid_local = uid
uid_foreign = pid
field.itemnumber = 6

}

EXT: Shop System - 22

Property: Data type: Description: Default:

imageMarker array of string Defines how the marker for the image is composed. In this example image
names like 30_P1_001.jpg can be used, where the second part P1 and
the third part 001 form the marker. So the marker will be
###CATEGORY_IMAGE_P1_001###.

Example:
ALL.imageMarker {

type = imagename
parts = 2,3

}

orderBy string List of the fields by which the items will be ordered. sorting

fetchImage string If set, the images for the table are taken from the images of another table

Example:
plugin.tt_products.conf.tt_products.ALL.fetchImage {

type = foreigntable
table = tt_content

}

language array of string The name of a language file with translations from the default language
into another language.
type:

• csv ... The values are separated by ';' and newline characters
• noTranslation ... do not use the language overlay table
• field ... the translation is in fields
• table ... the translation overlay table

file: Path and name of the file
field: name of the field on left and new value on right side
notinst
Example:col
[globalVar = GP:L = 1]
language {

type = csv
file = fileadmin/data/EnglishCategories.csv

}
[GLOBAL]

Example:
language {

type = field
field.title = subtitle

}

image IMAGE cObject Image is copied into the others via TypoScript and can be used for several
code fields.

Example:
###PRODUCT_IMAGE1:M###

plugin.tt_products.conf.tt_products.ALL.image.m {
wrap = |

file.maxW = 320
file.maxH = 280

}

filter array of string Use only table records which apply to a filter on a field base.
type:

• regexp ... use a regular expression
field: name of the field on left and value on right side

Example:
filter {

type = regexp
field.title = [:alpha:]+[:blank:]+1[:blank:]+

}

Will filter all records of the table to use only those where the title has
characters and a 1 on the last position.

urlparams string Comma separated list of tt_products URL parameters which must have a
value. Otherwise no items will be displayed.
Normally no products shall be shown below a category list when no
category has been selected yet. If you leave this empty, then all products
will be listed in the list view when no category parameter is given and you
have a category list view on the page.

EXT: Shop System - 23

Property: Data type: Description: Default:

displayColumns string Number of columns on the display
You have to adapt your template using special template markers. The
ITEM_SINGLE_PRE_HTML and ITEM_SINGLE_POST_HTML must
surround your <TD>-</TD> tags, so the table will be created correctly. The
first number is the order in the category hierarchy.

Example:
displayColumns {

1 = 3
}

Example:
<!-- ###ITEM_SINGLE### begin-->
###ITEM_SINGLE_PRE_HTML###
<TD height="150" bgcolor="###GC1###" valign="bottom"
align="center">
<!--###LINK_ITEM###-->
###GW1B######PRODUCT_TITLE######GW1E###
<!--###LINK_ITEM###-->

###PRODUCT_IMAGE###

###GW1B### item count: ###GW1E### <INPUT size="3"
maxlength="4" type="text" name="###FIELD_NAME###"
value="###FIELD_QTY###">
<p> </TD>
###ITEM_SINGLE_POST_HTML###
<!-- ###ITEM_SINGLE### end -->

Form configuration
Setup only. There are several forms which can be configured. Put the code after the form settings.

Example:
plugin.tt_products.form.SEARCH.name = ShopSearchForm

Property: Data type: Description: Default:

name name of the form. If empty the whole subpart will not be drawn. depends on
codefield

Basket configuration
You can configure the behaviour of the basket here.

Example:
plugin.tt_products.basket.minPrice {

type = price
collect = goodstotal
value = 250

}

Property: Data type: Description: Default:

minPrice array of string minimum price which the products must reach to get a permission to buy
them. E.g. only products at a total price of at least 250 shall be accepted.

Example:
minPrice {

type = price
collect = goodstotal
value = 250

}

Payment and shipping configuration
Payment and shipping are very similar in configuration and therefore shared the same property list with special notes if
something is for the one type only. The configuration of payment and shipping is in short a question of defining the items to
choose from on the basket page. That is, a choice of one out of many transportation methods and one out of many payment
methods. Therefore you can for instance select either radio-button representation or selector box.

The number of the selected payment method or shipping method is reflected in the html-template certain places and you may
also want special PHP scripts executed based on the settings. That's all allowed.

Property: Data type: Description: Default:

radio boolean If set, you get radio button layout. If not, selector-box. 0

EXT: Shop System - 24

Property: Data type: Description: Default:

template string (Radio layout only)
If .radio is true, this string is the 'template' for the radio items.

Default is (in one line):
<nobr>###IMAGE### <input type="radio"
name="recs[tt_products]['.$key.']" onClick="submit()"
value="###VALUE###"###CHECKED###>
###TITLE###</nobr>

wrap string (Select layout only)
If .radio is false, this string wraps the <option> tags in a <select>-tag!

Default is (in one line):
'<select name="recs[tt_products]['.$key.']"
onChange="submit()">|</select>'

TAXpercentage double TAX/VAT percentage.
Double value (!) (means, "use . as decimal point")
This substitutes priceNoTax. This can be different to the global tax with
the same name.

Example:
Danish payment TAX is 25%:
payment.TAXpercentage = 25.00

from global

TAXincluded boolean Set this, if TAX is included in the payment/shipping prices. from global

Array of integers Configuration, see below

Examples:
TAXpercentage = 12
10.title = Credit card
10.image.file =
typo3/sysext/cms/tslib/media/logos/dankort.gif
10.price =
10.percentOfGoodstotal = 0
10.calculationScript =
EXT:tt_products/pi1/products_comp_calcScript.inc

30.title = By mail
30.image.file =
typo3/sysext/cms/tslib/media/logos/postdanmark.gif
30.price = 40

Configuration of payment / shipping items

title string Title of item, eg. “Master card” or “Ground mail”
The title will be cloned, if markers like
###STATIC_COUNTRIES_CN_ISO_3### are used together with
where.static_countries.

image IMAGE cObject Logo image for the item

price double or
array of integers
see below for
additional
parameters

Price of item, including or excluding VAT, depends on TAXincluded.

You use integers to specify the minimal number of items for which the
price is valid. 6 items and more will cost 5.8 in this example.

Example:
30.price.type = count
30.price.1 = 4
30.price.6 = 5.8

priceTax double Depricated (1st July 2008)
Price of item, including VAT

use price,
TAXpercentage
and TAXincluded
instead

priceNoTax double Depricated (1st July 2008)
Price of item, excluding VAT
Notice: you have to calculate the VAT amount here by yourself!

use price,
TAXpercentage
and TAXincluded
instead

replaceTAXpercentage double see TAXpercentage
If set, the general TAXpercentage will be overwritten by this value.

priceFactWeight double shipping ONLY:
Price is calculated from weight of all products. Will be added to price.
The weight is mulitplied with this factor to increase the shipping price.

percentOfGoodstotal double Price of item, calculated from a percentage of the total amount before
payment/shipping

EXT: Shop System - 25

Property: Data type: Description: Default:

percentOfTotalShipping double payment ONLY:
If set the payment costs are calculated in the percentage of the total
product tax price inclusive the shipping tax price.

creditcards string payment ONLY:
Comma separated list of allowed uids for the creditcards.
See file localland_db.xml about the values.
(sys_products_cards.cc_type.I)
0 ... American Express
1 ... Diners Club
2 ... Mastercard
3 ... Visa

accounts boolean payment ONLY:
If set the payment with booking from the entered bank account will be
allowed.

calculationScript resouce PHP script which is included in a “blank” function and it should be written
to manipulate amounts in the internal arrays.
This script could be used to calculate a special fee regarding a
payment/shipping item.
For an example of application, see
media/script/products_comp_calcScript.inc which shows you how to raise
the final amount with 5.75% of it's own value as to compensate for fees to
international credit card organisations.
Properties of the calculation script is passed to the function as $conf
array.

handleScript resource PHP script which is included in a “blank” method called from
products_basket() in user_products class when the order is finalized.
This function must take care of displaying templates during the payment
process with a payment gateway as well as finalizing the order afterwards.
See pi/payment_DIBS.php for an example. A HTML-template file follows.
Properties of the handle script is passed to the function as $conf array.
The content of the variable $content is returned as content.

handleLib string payment ONLY:
Name of the TYPO3 library to handle the Payment. Currently you can set
only 'paymentlib' here to use Rober Lemke's Payment Library Extension.

Example:
30.handleLib = paymentlib

handleURL string If set, this handleURL is called instead of the THANKS-url (by PIDthanks)
in order to let eg. a handleScript process the information if payment by
credit card or so.

handleTarget string Alternative target for the form.

excludePayment list of integers shipping ONLY:
This is a list of payment method keys (their numbers) which are not
available given a certain delivery form. For instance if people pick up
goods in the store, you don't want them to transfer money or pay online
but just order the goods. So you can exclude those payment methods.

Example:
...
40.title = Pick up in store
40.excludePayment = 10,40

}

replacePayment list of integers shipping ONLY:
This is a list of payment settings which will be overridden if this shipping
method has been selected.

Example:
...
40.title = China
40.replacePayment.10.title = Payment with China
40.replacePayment.10.price = 100

}

show boolean If set, the item is shown in the list. 1

showLimit double If set, then this item will only get shown when there is at least this number
of products in the basket.
0 ... always show this item

0

type string Payment ONLY:
fe_users ... the payment can be configured via the fe_users table

visibleForGroupID int+ Payment ONLY:
This payment method is only available, if a user is logged in and member
of this frontend user group

EXT: Shop System - 26

Property: Data type: Description: Default:

addRequiredInfoFields string Payment ONLY:
Additional required fields in the INFO page, if this payment method is
selected. Useful for credit card payment.

Configuration price Parameters for payment / shipping

type string Meaning of the number:
count ... the products count
weight ... the calculated weight in Gramm
price ... the total products price

WherePIDMinPrice int+ shipping ONLY:
Set a minimum price for shipping if there is an item in the basket which is
from the sysfolder of this PID.
Where 155 is the PID and 7.5 is the minimum price taken for shipping
costs when at least one product in the basket comes from the page with
that PID.

Example:
plugin.tt_products.shipping {
10.title = Parcel
10.price.type = weight
10.price.WherePIDMinPrice.155 = 7.5
10.price.1 = 1.5
10.price.500 = 2.5
10.price.1000 =3.5
}

where.static_countries string shipping ONLY:
Set a SQL WHERE condition to follow for the selected country in the
static_countries table of the static_info_tables extension.

Example:
plugin.tt_products.shipping {
10.title = Parcel Germany
10.where.static_countries = cn_short_local ==
'Deutschland'
10.price = 5.9
20.title = Parcel EU
20.where.static_countries = cn_eu_member = 1 AND
cn_short_local != 'Deutschland'
20.price = 8.9
30.title = Outside EU
30.where.static_countries = cn_eu_member <> 1
30.price = 15
}

productsNoTax int+ shipping ONLY:
Set if the taxes are included in the price for all products.

noCostsAmount double When the total amount for the products reaches this value then no costs
will be calculated.

Example:
plugin.tt_products.shipping {
10.title = Parcel
10.price.type = weight
10.price.noCostsAmount = 200
10.price.1 = 1.5
}

Pricecalc, discountprice and creditpoints configuration
The pricecalc gives you the possibility to build the price sum of products using a calculation table. The discount price will be
used for all users who belong to the group set in discountGroupName.

EXT: Shop System - 27

Property: Data type: Description: Default:

prod two-edged list of
integers

The left edge of integers correspond to lines belonging together, the
meaning of the right edge depends on the settings for each line.

Pricecalc:
Special Prices for the products. Where 1 product costs 4.99, 2 products
will cost 8.99. With discount price this will form the price for one product,
with pricecalc it is the price for all products together where 1 has cost 4.99
in the products folder. The discountprice overrides the pricecalc if
possible, because this should be cheaper then. A price calculation from
here will get replaced if price2 is used.

Example:
pricecalc {
10.type = count
10.field = price
10.where =
10.prod.1 = 4.99
10.prod.2 = 8.99
10.prod.5 = 19.99
20.type = count
20.field = price
20.where =
20.prod.1 = 6.99
20.prod.2 = 13.98
20.prod.5 = 29.99

}

Discountprice:
Here the single prices for products are calculated depending on the count
of articles, if type=count.
The additive settings tells if all the products are counted together even
from different lines.

Example:
discountprice {
10.type = count
10.field = price
10.additive = 1
10.where =
10.prod.1 = 4.99
10.prod.100 = 2.49
10.prod.1050 = 2.39
20.type = count
20.field = price
20.where =
20.prod.1 = 6.99
20.prod.100 = 2.59
20.prod.1050 = 2.49

}

Creditpoins:
This tells you how many creditpoints someone will get if he buys articles
in the shop. The right values are the percentage of the price of the
ordered articles, if type=price.

Example:
creditpoints {
pricefactor = 0.5
10.type = price
10.prod.1 = 0.02
10.prod.101 = 0.04
10.prod.501 = 0.06

}

0

additive double Only valid for discount price. If set all the products with any of these
discount prices are counted together to calculate which discount price will
apply. If unset only the products of the same price are counted.

type string Meaning of the right edge integer which usually gets calculated:
count ... the products count (pricecalc and discountprice only)
price ... the price field is used (creditpoints only)

EXT: Shop System - 28

Property: Data type: Description: Default:

pricefactor double Used to calculate how much money someone will get for his creditpoints.
2 creditpoins will give 1 Euro or the currency of your choice.

Example:
creditpoints {
pricefactor = 0.5

}

[tsref:(script).productsLib.payment/(script).productsLib.shipping]

payment_DIBS.php
Properties of the handleScript for DIBS interfacing (http://www.architrade.com/uk/):

Property: Data type: Description: Default:

templateFile resource Template file for use with DIBS
You have to put the following line in the form of the tt_products template
before the DIBS script will be called:

<input type="hidden" name="products_cmd"
value="cardno">

soloe boolean If set, the script uses sub-template with marker
###DIBS_SOLOE_TEMPLATE### instead of the default which is
###DIBS_CARDNO_TEMPLATE###

direct boolean If set, the script uses sub-template with marker
###DIBS_DIRECT_TEMPLATE### instead of the default which is
###DIBS_CARDNO_TEMPLATE###

merchant boolean Merchant id

currency int+ Currency number, ISO4217 format

relayURL string The url of the shop where their secure server is going to fetch the basket.

test boolean If set, the test-field is set in the forms.

cardType string Card type,

Example values:
DK = Dankort
V-DK = Visa-Dankort
MC(DK) = Mastercard/Eurocard issued in Danmark
VISA = Visakort issued abroad
MC = Mastercard/Eurocard issued abroad
DIN(DK) = Diners Club, Denmark
DIN = Diners Club, international

account string DIBS account feature

addOrderInfo boolean If set, order info is added to the form. DIBS can pickup this info and
simply display it with the payment information.

k1
k2

string DIBS key values

[tsref:(script).productsLib.paymentDIBS]

EXT: Shop System - 29

Tutorial
If you are a beginner with the shop system, you should start with the step by step tutorial which is available under the
extension key tut_ttproducts_de.

Example of a configuration from Inter-Photo A/S (www.inter-photo.dk):

xxxxx.xxxx {
10.title = Dankort, VISA-Dankort
10.image.file = media/logos/dankort.gif
10.image.params = align=absmiddle vspace=2
10.handleScript = media/scripts/payment_DIBS.php
10.handleScript {
merchant = xxxxx
test = 0
k1 = xxxxx
k2 = xxxxx
currency = 208
addOrderInfo = 1
account =
cardType = DK,V-DK
relayURL = http://www.inter-photo.dk/index.php?id=204

}
10.handleURL = index.php?id=204
10.handleTarget = _top

20 < .10
20.title = Unibank e-betaling
20.image.file = media/logos/soloe.gif
20.handleScript.soloe=1

}

Example in product view make product title the page's title
If you want to fetch the product title into some marker, i.e. for use in automake_template or similar, try this code:

Code Listing:

first set pagetitle to the page's title
temp.pagetitle = TEXT
temp.pagetitle.field = title

now overwrite with the product's title in case it's non-empty
[globalVar = GP:tt_products > 0]
temp.pagetitle = COA
temp.pagetitle {

10 = RECORDS
10 {

source.data = GPvar:tt_products
tables = tt_products
conf.tt_products = TEXT
conf.tt_products {

field = title
}

}
}
// For single record display, cache has to be disabled.
config.no_cache = 1
[global]

temp.mainTemplate = TEMPLATE
temp.mainTemplate {

Feeding the content from the Auto-parser to the TEMPLATE cObject:
template =< plugin.tx_automaketemplate_pi1
Select only the content between the <body>-tags
workOnSubpart = DOCUMENT_BODY
subparts.title < temp.pagetitle

....

Example templates
Here comes the template part, when a new user has been registered automatically as front end user.

<HR>

<h3>EMAIL_NEWUSER_TEMPLATE</h3>

Subpart used as template for the account-creation-emails. First line is
used as subject for the mail.

<pre>

EXT: Shop System - 30

<!-- ###EMAIL_NEWUSER_TEMPLATE### begin
Subpart used as template for the account-creation-emails First line is
used as subject for the mail.
-->
New user account created
Dear ###PERSON_NAME###,
you have made an order at http://..................../ for the first time.
To make orders in the future more easy a user account has been created.
Your account data:
user name: ###USERNAME###
password: ###PASSWORD###
Regards,

the Shopmaster
<!-- ###EMAIL_NEWUSER_TEMPLATE### end -->
</pre>

Example bananaGuard
(see file example_template_bill_de.tmpl delivered from http://bananaguard.de)

This example includes special price calculations and the automatic creation of a bill and delivery sheet. You have to install
the extensions feuser_admin and conf_userts if you want to build a similar shop. Move the example_template_bill_de.tmpl to
fileadmin/tmpl_files/products_eur_.tmp. To use this template you have to search for '?id=' in your text and substitute to
following PIDs with those of your system.

The pages and plugins for the page tree are:

- 'BananaGuard' with main template of your choice and

Constants:

plugin.tx_srfeuserregister_pi1.email = info@shopms.de
plugin.tx_srfeuserregister_pi1.confirmPID = 83 ... You have to use your confirm PID.
styles.content.loginform.pid = 108 ... Your Users sysfolder PID.

-- 'Home' which is a shortcut to BananaGuard

-- 'Preise und Versand' with special information about the prices and shipping

-- 'BananaShop' which has its own template especially for usage with the shopping system

Constants:

plugin.tt_products.file.templateFile = typo3/ext/tt_products/pi/products_eur_.tmpl
plugin.tt_products.TAXpercentage = 16
plugin.tt_products.priceDecPoint = .
plugin.tt_products.maxW_list = 80
plugin.tt_products.outputfolder = fileadmin/data

plugin.tt_products.color2 = #003399
plugin.tt_products.color1 = #FFFFFF
plugin.tt_products.wrap2 = |
content.tableCellColor = #003399

Setup:

plugin.tt_products.code.field = select_key
plugin.tt_products.alwaysInStock = 1

plugin.tt_products.statusCodes.1 = Bestellungseingang
plugin.tt_products.statusCodes.11 = Der bananaSHOP wartet auf Ihren Zahlungseingang
plugin.tt_products.statusCodes.20 = Ihre Ware wird versendet
plugin.tt_products.statusCodes.101 = Bestellung abgeschlossen
plugin.tt_products.statusCodes.200 = Bestellung storniert

plugin.tt_products.orderEmail_from = info@bananaguard.de
plugin.tt_products.orderEmail_fromName = bananaGUARD.de
plugin.tt_products.orderEmail_to = info@bananaguard.de
orderNumberPrefix = order2005_

plugin.tt_products.discountGroupName = Team
plugin.tt_products.lockLoginUserInfo=true

plugin.tt_products.conf.tt_products.LIST.displayColumns = 3
plugin.tt_products.outputFolder = {$plugin.tt_products.outputfolder}

plugin.tt_products {
payment >

payment {
radio = 1
TAXpercentage = 16
10.title = Vorkasse
20.title = PayPal
20.percentOfTotalShipping = 0.04
30.title = Nachnahme

EXT: Shop System - 31

30.discountDeactive = 1
30.price.1 = 4
30.price.6 = 5.8
30.showLimit = 99
}

shipping {
radio = 1
TAXpercentage = 16
10.title = Deutschland
10.image.file =
10.price.type = count
10.price.1 = 2.5
10.price.6 = 4.8
10.price.50 = 10
10.price.100 = 25
10.price.120 = 30
10.price.300 = 150
10.percentOfGoodstotal = 0

20.title = Europa (nicht Deutschland)
20.image.file =
20.price.type = count
20.price.1 = 8.8
20.price.6 = 11.8
20.price.50 = 11.8
20.price.100 = 25
20.price.120 = 30
20.price.300 = 150
20.percentOfGoodstotal = 0

30.title = Selbstabholung
30.image.file =
30.price.1 = 0
30.percentOfGoodstotal = 0
}

pricecalc {
type = count
field = price
10.prod.1 = 4.99
10.prod.2 = 8.99
10.prod.5 = 19.99
20.prod.1 = 6.99
20.prod.2 = 13.98
20.prod.5 = 29.99

}

discountprice {
10.type = count
10.field = price
10.additive = 1
10.where =
10.prod.1 = 4.99
10.prod.100 = 2.89
10.prod.1050 = 2.77
20.type = count
20.field = price
20.where =
20.prod.1 = 6.99
20.prod.100 = 3.00
20.prod.1050 = 2.89

}
}

plugin.tt_products.basketImage.imageLinkWrap.height = 800
plugin.tt_products.listImage.file.maxW = 150
plugin.tt_products.shipping.40 >
plugin.tt_products.PIDagb =

plugin.tt_products.createUsers = 1
plugin.tt_products.orderEmail_htmlmail = 1

Plugin:

Products, CODE: LIST

The next pages are:

--- 'Shopping Basket'

Plugin:

Products, CODE: BASKET, At the BORDER a login content type with send to page 'Warenkorb'

--- 'Cash Box'

EXT: Shop System - 32

Plugin:

Products, CODE: PAYMENT, FINALIZE, INFO

--- 'Order Status'

Plugin:

Products, CODE: TRACKING

--- 'Invoicing'

Plugin:

Products, CODE: BILL

--- 'Delivery'

Plugin:

Products, CODE: DELIVERY

--- 'Articles' Sysfolder

Plugin:

Products, CODE: LIST

-- 'Contact/Order' contains a form, text and login

-- 'BananaINSIDER' only visible after frontend login, contains a login plugin at the right margin

Access of the visibility settings is the group 'Team'

--- 'My profile'

Plugin:

Frontend User Registration

--- 'INSIDER Infos'

--- 'bananaBOARD'

Plugin:

Board, Tree, CODE: FORUM, POSTFORM

-- 'Users' Sysfolder of the group 'Team'

EXT: Shop System - 33

Known problems
Checklist:
● include a 'Shop System' static template file (from extensions)

● never use the 'Shop System Test' or the 'plugin.tt_producs [DEPRECATED]'

● set 'in stock' greater 0 for the products and articles

● do not use languages or have products in the products alternative languages tables

● the shop template file is found

● an error in the shop produces an entry in the PHP error_log file (activate this in Install Tool and php.ini)

● the cache has been cleared before

● set the pid_list and recursive in TypoScript or set the startingpoint/recursive inside of the shop plugins

General:
– If you make an update with the Extension Manager from an older version of tt_products and did not install the Table

Library 'table' and FEBE Library 'fh_library' before that, you will end up in the error message

TYPO3 Fatal Error: Extension key "table" was NOT loaded! (t3lib_extMgm::extPath)

Steps to undo the TYPO3 fatal error:

1. edit typo3conf/localconf.php
2. remove the tt_products entry
3. delete the temp_CACHED_ files in typo3conf
4. press reload from the browser

– Please look at the website http://wiki.typo3.org/index.php/Ext_tt_products .

– Get the latest development version at http://ttproducts.de

– .htaccess must be properly configured otherwise tt_products doesn't work as expected because the plugin can't find all
necessary scripts with poor configuration of .htaccess.

– Wrong parameters, GET/POST var 'tx_ttproducts_pi1[product]' was missing or no product with uid = 0 found.
You should set the PIDitemDisplay to inform the shop how the link parameter 'tx_ttproducts_pi1[product]' to the single
view shall be generated.

– Pay attention to all legal claims of all the countries to where you send goods!

– Plugin doesn't produce any output
See the checklist above.

To-Do list
– Wishlist: http://wiki.typo3.org/index.php/Ext_tt_products#Wishlist

– Rewriting of the code for PHP5.

Changelog
See the file tt_products/ChangeLog for more details

- 26.03.2005 bring in of zk_products from Klaus Zierer (zk_products), multiple column listing, bill , delivery and special price
calculations by Franz Holzinger
- 06.05.2005 second price and price for additional accessory from Jens Schmietendorf, example template from
http://bananaguard.de , zk_products 1.3.2 from Klaus Zierer, VAT by Franz Holzinger
- 23.06.2005 products_mail.inc deleted, example template by Franz Holzinger
- 26.07.2005 Display orders, creditpoint and voucher system by Bert Hiddink
- 03.08.2005 Notes from the zk_products forum, PIDtracking
- 11.09.2005 Gift certificates
- 14.09.2005 Flexforms instead of CODEs
- 28.10.2005 Accessory has been replaced by sizes with article table
- 23.02.2006 Better English translation sponsored by Bill Alexy
- 14.07.2006 You must now insert the static shop template manually from the template setup.
 CSS styled template by Robert Markula
- 06.10.2007 The CODE field will be shown in the page module for the chosen flexforms.

EXT: Shop System - 34

EXT: Shop System - 35

