
r

RealURL
Extension Key: realurl

Copyright 2003-2005

 martin@berillium.net, <martin@berillium.net>

&

Kasper Skårhøj <kasperYYYY@typo3.com>

&

Dmitry Dulepov <dmitry@typo3.org>

This document is published under the Open Content License

available from http://www.opencontent.org/opl.shtml

The content of this document is related to TYPO3

- a GNU/GPL CMS/Framework available from www.typo3.com

Table of Contents
Real URL...1

Introduction..1
What does it do?..1
Features...2

Configuration..2
Installation..2
URL en/decoding background....................................3
Configuration directives..5
Handling relative links with Speaking URLs.............19

class.tx_realurl_advanced.php...................................21
Introduction...21
Configuration..21

Automatic configuration..23
Overview...23
Automatic configuration of extensions.....................23

Appendix...24
ToDo list..25
Changelog...25

Introduction
What does it do?
The extension provides automatic transformation of URLs with GET parameter in the frontend (like “index.php?
id=123&type=0&L=1”) into a virtual path, a so called “Speaking URL” (like “dutch/contact/company-info/page.html”) and back
again. The objective is that URLs shall be as human readable as possible.

The extension is very flexible and can provide from simple translation of page IDs to encoding of almost any possible
combination of GET parameters.

Examples
Typed URL TYPO3 id and type

http://www.domain.com/ id=0, type=0

http://www.domain.com/products/product1/features/ id=123, type=0

http://www.domain.com/products/product1/features/leftframe.html id=123, type=2

RealURL - 1

Background
TYPO3 works with page-IDs. This works great, however the URLs are very ugly (“...index.php?id=123&type=0&L=1....” etc.).
There are workarounds (simulateStaticDocuments), but that's just a fake: the ID must still be supplied in the URL, which is
not desirable. Furthermore, only the page-title is shown, not the complete 'path' (or 'rootline') to the page.

Normally, you type in the path and filename of a document, but TYPO3 works exclusively with page-IDs. The RealURL-
extension provides a way to translate between page-IDs and (virtual) URLs that are easy to read and remember.

The extension requires the Apache module “mod_rewrite” to rewrite the virtual URLs of the site to the TYPO3 frontend
engine.

Generally it will work out-of-the-box but you will have to address the issue that all media referenced in the HTML page has to
have either absolute URLs or the <base> tag set. Both methods has advantages and drawbacks but the bottomline is that
you might have to fix your templates/coding various places to be compatible.

Features
• Supports various schemes for coding the page path, including userdefined schemes

• Pagetitles can contain spaces and characters like /.,&@ etc, the URL will still be nice.

• URLS are generated as nice-looking lowercase paths

• If a page is renamed, the old URL can still be used (see below in the Users Manual), so if the page was indexed by
e.g. Google, it can still be found.

• Offers advanced translation of almost any set of GET parameters to/from virtual URL

• Translation between a GET query string (“...&tx_myext[blabla]=123&type=2...”) and a virtual URL (“.../123/2/”) is
transparent to TYPO3 and all extensions; The only requirement is that the internal TYPO3 link generation functions
are used (“tslib_cObj::typolink”, “t3lib_tstemplate::linkData”)

• URLs are cached, so translating between URLs and IDs is very fast.

• It can handle different frames, or other pagetypes

• URLs are multilingual: if you're browsing in Dutch, you'll see Dutch URLs

• Once configured the systems works fully automatic, creating new and updating existing URLs

• You can easily see where shortcuts are pointing to, as the 'target' URL is generated, instead of the URL to the shortcut
itself.

• It automatically handles installations of TYPO3 in directories other than the root of the website too

• Rawurlencoding of remaining parameter GEt vars names

• It is incompatible with “simulateStaticDocuments” .

Configuration
Installation
To install this extension, four steps must be taken:

1. Install it in the Extension Manager

2. Configure Apache / .htaccess

3. Modify your TypoScript template records with configuration for RealURL

4. Configure the extension in typo3conf/localconf.php

Install the extension
This is documented very well in the usual TYPO3 docs: just click the little gray sphere with the plus-sign and when it asks for
any changes to commit, let it make them. It's not doing anything yet though.

Configure Apache
RealURLs work by providing 'virtual paths' to 'virtual files'. These don't actually exist on the file-system, so you must tell
Apache to let a PHP-script handle the request if it can't find the file. This way, all URLs to pages (like
www.server.com/products/product1/left.html) will be 'redirected' to /index.php, which will handle the translation of the URL
into GET parameters. Real files (like images, the TYPO3 backend, static html-files, etc.) will still be handled by Apache itself
though.

You should put the supplied sample .htaccess file (called _.htaccess) in the root of your TYPO3-installation.

Alternatively, you could include the following lines in your httpd.conf, probably in the VirtualHost-section. Here is an
example:
<VirtualHost 127.0.0.1>

DocumentRoot /var/www/typo3/dev/testsite-3/

RealURL - 2

http://www.server.com/products/product1/left.html

ServerName www.test1.intra
RewriteEngine On
RewriteRule ^/typo3$ - [L]
RewriteRule ^/typo3/.*$ - [L]
RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_FILENAME} !-d
RewriteCond %{REQUEST_FILENAME} !-l
RewriteRule .* /index.php

</VirtualHost>

NOTICE: USING httpd.conf is currently known not to work since t3lib_div::getIndpEnv('TYPO3_SITE_URL') is not
correct. Solution remains to be found.

If you put it into a .htaccess file it has to look slightly different, basically stripping the leading slashes (“/”):
RewriteEngine On
RewriteRule ^typo3$ - [L]
RewriteRule ^typo3/.*$ - [L]
RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_FILENAME} !-d
RewriteCond %{REQUEST_FILENAME} !-l
RewriteRule .* index.php

This will tell Apache that it should rewrite every URL that's not a filename, directory or symlink. It leaves everything starting
with /typo3/ alone too.

Notice: For this work you need the Apache module “mod_rewrite”!

Also refer to the Appendix for extended information on mod_rewrite issues.

TypoScript configuration
Like with “simulateStaticDocuments” you need to activate the generation of the virtual file/path names in the TypoScript
record – otherwise your website will not utilize the new URL encoding method.

However that is trivial; just place these four lines in the main TypoScript template record of your website:
 0: config.simulateStaticDocuments = 0
 1: config.baseURL = http://mydomain.com/
 2: config.tx_realurl_enable = 1

Line 0 simply disables “simulateStaticDocuments” - “RealURL” is incompatible with simulateStaticDocuments and will simply
not work if it has been enabled. This line should remind you of this fact.

Line 1 makes the frontend output a “<base>” tag in the header of the pages. This is required because relative references to
images, stylesheets etc. will break when the virtual paths are used unless this has been set. Please see below for a detail
discussion of why this is needed. Do not forget to write real name of your domain! And note slash in the end – it is required!

Line 2 enables the encoding of URLs as the virtual paths, the “Speaking URLs”.

Configure the extension
Finally, you probably want to configure the way URLs are encoded. For simple needs this is quite easy and the more
advanced URLs you want to encode the more configuration you need – simple, isn't it.

Configuration is done in “localconf.php” with the variable $TYPO3_CONF_VARS['EXTCONF']['realurl']

Please see the section later dealing with configuration options. It also offers a lot of examples.

URL en/decoding background
This section provides a bit of background information about how URLs are encoded and decoded in the system.

The general principle is that the encoding and decoding should be totally transparent to the system. This means that any
extension will work with RealURL as long as they use the general link generation functions inside TYPO3 as they should do
already. You can also use “simulateStaticDocuments” as a test - if it worked with that, it will (most likely) work with the
RealURL extension as well.

The implementation of this transparency is done by encoding the virtual URL strictly on the basis of the GET parameters
given to the encoder method. And when a HTTP request is made to a virtual URL it is decoded into a set of GET parameters
which is written back to the global variables HTTP_GET_VARS / _GET - and thus any application in the system will see the
parameters as it they were passed as true GET parameters.

Encoding:

URL with GET parameters -> Speaking URL -> HTML page

RealURL - 3

The encoding of the URLs happens by using a hook in the method t3lib_tstemplate::linkData(). This is configured in
“realurl/ext_localconf.php”:
$TYPO3_CONF_VARS['SC_OPTIONS']['t3lib/class.t3lib_tstemplate.php']['linkData-PostProc'][] =
'EXT:realurl/class.tx_realurl.php:&tx_realurl->encodeSpURL';

Decoding:

HTTP request with Speaking URL -> URL is decoded, overriding values in HTTP_GET_VARS -> page rendered as always

The decoding of the URLs happens by using a hook in tslib_fe::checkAlternativeIdMethods(). This is configured like this:
$TYPO3_CONF_VARS['SC_OPTIONS']['tslib/class.tslib_fe.php']['checkAlternativeIdMethods-PostProc'][] =
'EXT:realurl/class.tx_realurl.php:&tx_realurl->decodeSpURL';

The syntax of a “Speaking URL”
Before we go on to the configuration section it's important to understand how the virtual path (Speaking URL) is decoded by
the system. Lets settle an example and break it up into pieces:
index.php?id=123&type=1&L=1&tx_mininews[mode]=1&tx_mininews[showUid]=456

This URL requests page id 123 with language “1” (danish) and type “1” (probably a content frame in a frameset) and on that
page the display of a mininews item with id “456” is requested while the “mode” of the mininews menu is “1” (list). This
parameter based URL could be translated into this Speaking URL:
dk/123/news/list/456/page.html

The configuration of RealURL needed to do this magic is as follows:
 1: $TYPO3_CONF_VARS['EXTCONF']['realurl']['_DEFAULT'] = array(
 2: 'preVars' => array(
 3: array(
 4: 'GETvar' => 'L',
 5: 'valueMap' => array(
 6: 'dk' => '1',
 7:),
 8: 'noMatch' => 'bypass',
 9:),
 10:),
 11: 'fileName' => array (
 12: 'index' => array(
 13: 'page.html' => array(
 14: 'keyValues' => array (
 15: 'type' => 1,
 16:)
 17:),
 18: '_DEFAULT' => array(
 19: 'keyValues' => array(
 20:)
 21:),
 22:),
 23:),
 24: 'postVarSets' => array(
 25: '_DEFAULT' => array (
 26: 'news' => array(
 27: array(
 28: 'GETvar' => 'tx_mininews[mode]',
 29: 'valueMap' => array(
 30: 'list' => 1,
 31: 'details' => 2,
 32:)
 33:),
 34: array(
 35: 'GETvar' => 'tx_mininews[showUid]',
 36:),
 37:),
 38:),
 39:),
 40:);

In order to understand how this configuration can translate a speaking URL back to GET parameters we have to first look at
how the Speaking URLs are divided into sections. This is the general syntax:

[TYPO3_SITE_URL] [preVars] [pagePath] [fixedPostVars] [postVarSets] [fileName]

Each of these sections (except [fileName]) can consist of one or more segments divided by “/”. Thus “news/list/456/” is a
sequence of three segments, namely “news”, “list” and “456”

Taking the speaking URL from above (http://www.my-domain.dk/frontend/dk/123/news/list/456/page.html) as an example we
can now break it up into these sections:

RealURL - 4

Section Part from Example
URL

General description Comment according to config

[TYPO3_SITE_URL] http://www.my-
domain.dk/fronten
d/

This part of the URL - the base URL of the site and
basically where the “index.php” script of the
frontend is located - is stripped of and is of no
interest to the resolve of the parameters.

[preVars] dk/ This section can contain from zero to any number
of segments divided by “/”. Each segment is bound
to a GET-var by configuration in the key “preVars”
(see example above)
The number of segments in the pre-vars section is
determined exactly by the arrays in “preVars”
configuration.
Typical usage would be to bind a pre-var to the “L”
GET parameter so the language of the site is
represented by the first segment of the virtual path.

In the configuration above there is only
one pre-var configured and that is bound
to the GET var “L”. Further a mapping
table tells that the value “dk” should be
translated to a “1” for the GET var value
when decoded. Also, if the segment does
not match “dk/” it is just ignored. meaning
that the default language version of the
danish page “.../dk/123/” would be just “.../
123/”

[pagePath] 123/ The page path determining the page ID of the
page. The default method is to just show the page
ID, but through configuration you can translate say
“contact/company_info/” into a page ID.
The number of segments of the path used to
resolve the page ID depends on the method used.

In this example the default method is used
(not configured at all) and that means the
raw page id (or alias if there were any) is
displayed; 123.
This is not “Speaking URL” behaviour,
sorry for this weak example...

[fixedPostVars] Fixed post vars is a sequence of fixed bindings
between GET-vars and path segments, just as the
pre-vars are. This is normally not useful to
configure for a whole site since general parameters
to pass around should probably be set as pre-vars,
but you can configure fixed post vars for a single
page where some application runs and in that case
may come in handy.
Typical usage is to apply this for a single page ID
running a specific application in the system.

Not used in this example.

[postVarSets] news/list/456/ postVarSets are sequences of GET-var bindings (in
pre-var style) initiated by the first segment of the
path being an identification keyword for the
sequence.
Decoding of postVarSets will continue until all
remaining segments of the virtual path has been
translated.
This method can be used to effectively encode
groups of GET vars (sets), typically for various
plugins used on the website.
Typical usage is to configure postVarSets for each
plugin on the website.
If postVars produce only empty segments, they will
be removed completely from URLs.

In this example there is a single post var
set (“news/list/456/”) where the keyword
“news/” (first segment) identifies the
following sequence (“list/456/”) to be
mapped to the GET vars
tx_mininews[mode] and
tx_mininews[showUid] respectively.

[fileName] page.html The filename is always identified as the segment of
the virtual path after the last slash (“/”). In the
“fileName” configuration a filename can be mapped
to a number of GET vars that will be set if the
filename matches the index key in the array.
Typical usage is to use the filename to encode the
“type” or “print” GET vars of a site.

In this example the “type” value “1” is
mapped to the virtual filename
“page.html”. In any other case the type
value will be set to blank.

Configuration directives
Configuration of RealURL is done in the array $TYPO3_CONF_VARS['EXTCONF']['realurl'] which again contains arrays. The
configuration directives are broken down into these tables describing options as they are grouped together in arrays within
the configuration array.

To support your understanding of the options please read the background information presented previously in this document
and look at the examples available.

$TYPO3_CONF_VARS['EXTCONF']['realurl']
Key Type Description

[host-name] ->siteCfg or pointer to other
key with ->siteCfg in same
array

Configuration of Speaking URL coding based on current host-name for the website. Offers
you the possibility of individual configuration for multiple domains in the same database.

If the value of an entry is a string, then the system will expect it to point to another key in
on the same level and look for ->siteCfg there.
Hostname is found by t3lib_div::getIndpEnv('TYPO3_HOST_ONLY') and always in
lowercase.

RealURL - 5

Key Type Description
_DEFAULT ->siteCfg or pointer to other

key with ->siteCfg in same
array

Configuration of default Speaking URL coding if no matches was found for the specific
HOST name.

Example
 1: $TYPO3_CONF_VARS['EXTCONF']['realurl'] = array(
 2: '_DEFAULT' => array(
 3: ...
 4:),
 5: 'www.typo3.org' => array (
 6: ...
 7:),
 8: 'www.typo3.com' => 'www.typo3.org',
 9: 'typo3.com' => 'www.typo3.org',
 10: '192.168.1.123' => '_DEFAULT',
 11: 'localhost' => '_DEFAULT',
 12:);

In this example the keys “_DEFAULT” and “www.typo3.org” is assumed to contain proper configuration of RealURL. If the
hostname turns out to be “www.typo3.com” or “typo3.com” the configuration of “www.typo3.org” is used. If the hostname is
“192.168.1.123” or “localhost” then the “_DEFAULT” configuration is used (which is redundant since it would be defaulted to
anyways!)

->siteCfg
Key Type Description

init ->init General configuration of the extension

redirects [path] Redirect URL Here you can specify virtual paths that should not be processed into GET vars but
rather trigger a HTTP redirect header directly to the URL entered as value. If such a
match happens the script issues a location-header and exits.

redirects_regex[regex] Redirect URL Extended version of the [redirects] configuration above where you can match the
path with a regex. You can also use back-references in the redirect URL.

Example:

'redirects_regex' => array(
 '^downloads/(.*)' => 'ftp://dl.domain.tld/public/dl/\1',
),

With this configuration any URL starting with the path “downloads/” will be redirected
to the ftp-server. For instance, “http://www.domain.tld/downloads/software/game.exe”
will be redirected to “ftp://dl.domain.tld/public/dl/software/game.exe”

'^francais/(.*)' => 'fr/\1',

This example will redirect any URL starting with “francais/” to “fr/” which is
supposedly the right key of the language on the site

preVars [0..x] ->partDef Configuration of pre-variables; a fixed set of variables bound to the initial segments
of the virtual path.
See description in previous section of this document.

pagePath ->pagePath Configuration of the id-to-path transformation method.
See description in previous section of this document.

fixedPostVars [pageIndex] [0..x] ->partDef Configuration of a fixed post-variable set which does not need a keyword to trigger its
interpretation. Basically like pre-vars, just set after the pagePath.
See description in previous section of this document.
Notice: “pageIndex” allows you to specify this for individual pages or all using
“_DEFAULT” keyword. See notice below this table.

postVarSets [pageIndex] [keyword] ->postVarSet Configuration of sets of post-variables; sets of post-variables are triggered by a
keyword in the virtual path.
See description in previous section of this document.
Notice: “pageIndex” allows you to specify this for individual pages or all using
“_DEFAULT” keyword. See notice below this table.

Important: The order in which the postVarSets occur is of great importance since
the first keyword definition that contains a definition for a single available GET-var
will be chosen. You should arrange the postVarSets strategically.

fileName ->fileName Configuration of filename significance; filenames can be bound to specific values of
GET parameters.
See description in previous section of this document.

RealURL - 6

ftp://dl.domain.tld/public/dl/software/game.exe
http://www.domain.tld/downloads/software/game.exe

Notice: In the table above there is defined an array key, “pageIndex”, for “fixedPostVars and postVarSets. This works mostly
in the same way as the host-name pointer did for the outer level. The key can be

1. either a page id, eg. “123”

2. or the keyword “_DEFAULT”.

The value of a key should be an array (according to the definition above) but if it is a string it is interpreted as a pointer to
another key on the same level.

A pointer cannot be set for “_DEFAULT”. Further, only page ids can be used (internally page aliases given as parameters will
be resolved first!).

Example structure

 1: array(
 2: 'init' => array(
 3: ...
 4:),
 5: 'redirects' => array(
 6: '' => 'cms/', // If default URL, redirect to subdir "cms/"
 7: 'test/' => 'http://www.test.test/', // If subdir is "test/" then redirect to URL
 8: 'myFolder/mySubfolder/myFile.html' => 'test/index.php',
 9:),
 10: 'preVars' => array(
 11: array(
 12: ...
 13:),
 14: array(
 15: ...
 16:),
 17:),
 18: 'pagePath' => array(
 19: ...
 20:),
 21: 'fixedPostVars' => array(
 22: '1383' => array (
 23: array(
 24: ...
 25:),
 26: array(
 27: ...
 28:),
 29:),
 30: '123' => '1383'
 31:),
 32: 'postVarSets' => array(
 33: '_DEFAULT' => array (
 34: 'consultancy' => array(
 35: ...
 36:),
 37: 'admin' => array(
 38: ...
 39:)
 40:),
 41:),
 42: 'fileName' => array(
 43: ...
 44:)
 45:);

This skeleton will help you to understand the structure defined in the table above for the “->siteCfg” level in the configuration.
Notice the examples for redirects.

->init
General configuration of the RealURL extension

Key Type Description
doNotRawUrlEncodeParameterNam
es

boolean Disable rawurlencoding of non-translated GET parameter names during encoding.

Background:
During the encoding of Speaking URLs from GET parameters any GET parameters
that cannot be translated into a Speaking URL will be set as GET parameters again.
During this process the parameter name will be rawurlencoded as it actually should
according to the RFCs covering this topic.
This means that a parameter like “tx_myext[hello]=world” will become “tx_myext
%5Bhello%5D=world“ instead - which is not as nice visually but more correct
technically.

RealURL - 7

Key Type Description
enableCHashCache boolean If set, “cHash” GET parameters are stored in a cache table if they are the only

parameters left as GET vars. This allows you to get rid of those remaining parameters
that some plugins might use to enable caching of their parameter based content.

respectSimulateStaticURLs boolean If set, all requests where the Speaking URL path is only a single document with no
path prefix (eg. “123.1.html”) are ignored as Speaking URLs. This flag can enable
backwards compatibility with old URLs using simulateStaticDocuments on the site.
This flag is ignored if the following conditions are all met:

● URL does contains intermediate path segments before file name (i.e. looks
like simulateStatic)

● Page ID is not found by TYPO3 core prior to realurl
● fileName.defaultToHTMLsuffixOnPrev is set to true

appendMissingSlash boolean /
string

If set, the a trailing slash will be added internally to the path if it was not set by the
user. For instance someone writes "http://the.site.url/contact" with no slash in the end.
"contact" will be interpreted as the filename by realurl - and the user wanted it to be the
directory. So this option fixes that problem.

Keyword: "ifNotFile"
You can specify the option as the keyword "ifNotFile". If you use that string as value
the slash gets prepended only if the last part of the path doesn't look like a filename
(based on the existence of a dot "." character).

adminJumpToBackend boolean If set, then the "admin" mode will not show edit icons in the frontend but rather direct
the user to the backend, going directly to the page module for editing of the current
page id.

postVarSet_failureMode string
(keyword)

Keyword: "redirect_goodUpperDir". Will compose a URL from the parts
successfully mapped and redirect to that.

Keyword: "ignore": A silent accept of the remaining parts.

Default (blank value) is a 404 page not found from TYPO3s frontend API.

disableErrorLog boolean If true, 404 errors are not written to the log table.

enableUrlDecodeCache boolean If true, caching of URL decoding is enabled.

The cache table is flushed when "all cache" is flushed in TYPO3. Entries for decode
cache is valid for 24 hours by default.

enableUrlEncodeCache boolean If true, caching of URL encoding is enabled.

The cache table is flushed when "all cache" is flushed in TYPO3.

emptyUrlReturnValue string If the URL is empty it usually is meant to be a link to the frontpage.

If you set this value to a string, that will be the URL returned if the URL is otherwise
empty.

If you set this value true (PHP boolean, “TRUE”), then it will return the baseURL set in
TSFE.

Setting it to “./” should work as a reference to the root as well. But it is not so beautiful.

reapplyAbsRefPrefix boolean If “config.absRefPrefix” is set in TypoScript setup, RealURL will stript this prefix before
making the final URL. Use this option to reapply the prefix. By default it is not set, so
prefix will be lost by default.

If you use linking across domains, do not put full domain name in config.absRefPrefix.
Use only “/” as prefix.

Reapplying prefix is made after entries are written to cache.

->partDef
Definition of mapping between a segment of the virtual path and a GET variable or otherwise.

Key Type Description
type string keyword By default the array defines a GETvar mapping but there are alternatives which are

configured by setting the type key:

“action” : If set, the segment can define various actions, like setting frontend editing or
redirecting to a certain URL, setting some parameters.

type = “action”
index[segment]
index[“_DEFAULT”]

->actionConfig
(or blank value which will
just accept the segment
but take no action on it)

The index array defines various actions and the first segment of the path is used as key to
look up which action in the array to take.
See ->actionConfig for more details and examples.

Default type

RealURL - 8

Key Type Description
GETvar The GET var name for which this processing is done.

Required

The value of the GETvar will pass through a transformation defined by the other
configuration options here. Basically this is the flow:
● First, check if "cond['prevValueInList']" allows processing and if not, return

accordingly.
● The value is translated through the “valueMap” if entries matches
● If no entries in “valueMap” matched, “noMatch” is consulted for an action on this

situation.
● If noMatch did not trigger, we look for a lookup table and if defined we make a look up

translation (“lookUpTable”).
● If no lookup table was defined to translate the value, we look for the “valueDefault” and

if set, apply that value.
● If none of these actions captured the value we just pass it through in its raw form.

cond['prevValueInL
ist']

list of values If this key is set the segment will be processed only if the previous value is found in the
comma list of this value! Otherwise it will be bypassed.

valueMap array of “segment” =>
“Get var value”
(translation table)

The valueMap is a static translation table where each key represents a segment from the
speaking URL and the value for the key is the true value of that parameter.
When URLs are encoded this table is reversed and if there are duplicate values the last
entry is used as speaking URL value.

noMatch string keyword Keyword that defines the action if the value did not match any entry in the valueMap array.

“bypass” : means that if the path segment did NOT match an entry in “valueMap” the
segment will be re-applied to the stack and we return/break (and thus preserves the
parameter for the next segment)
“null” : means that if the value is NOT found in the valuemap the getParameter is not set
at all.

lookUpTable ->lookUpTable Configuration of a database table by which to perform translation from id to alias string.

userFunc userFunc User function to do id<=>alias mapping. Only used if “lookUpTable” is not.

Example configuration:
'userFunc' =>
'EXT:realurl/class.tx_realurl_userfunctest.php:&tx_realurl_userfunc
test->main'

Example class in RealURL (class.tx_realurl_userfunctest.php)

class tx_realurl_userfunctest {
 function main($params, $ref) {
 if ($params['decodeAlias']) {
 return $this->alias2id($params['value']);
 } else {
 return $this->id2alias($params['value']);
 }
 }
 function id2alias($value) {
 return '--'.$value.'--';
 }
 function alias2id($value) {
 if (ereg('^--([0-9]+)--$',$value,$reg)) {
 return $reg[1];
 }
 }
}

This class will change an id “6” to the alias “--6--” when encoded. During decode the alias
“--6--” is changed back to “6”. Of course this doesn't make much sense in terms of
speaking URLs but with such a user function you can encode and decode ids/aliases as
you like!

valueDefault string Default value to set if the path segment did not match any entries in “valueMap” or was
otherwise captured for translation.

Notice: Default values are applied AFTER any “noMatch” settings are processed (and
others, see flow description for key “GETvar”)

Example:
 1: 'preVars' => array(
 2: array(
 3: 'GETvar' => 'no_cache',
 4: 'valueMap' => array(
 5: 'no_cache' => 1,

RealURL - 9

 6:),
 7: 'noMatch' => 'bypass',
 8:),
 9: array(
 10: 'GETvar' => 'L',
 11: 'valueMap' => array(
 12: 'dk' => '1',
 13: 'danish' => '1',
 14: 'uk' => '2',
 15: 'english' => '2',
 16:),
 17: 'noMatch' => 'bypass',
 18:),
 19:),

The above example shows a configuration that allows two prevars in a path BUT they are both optional (due to the “noMatch”
=> “bypass” setting).

Normally a URL in the default language would look like this:
123/page.html

Then, if the L=1 GETvar is set, the URL will be like this:
danish/123/print.html

Finally, if the first segment matches “no_cache” the “no_cache=1” GET var is set and the interpretation of the language
GETvar is moved to segment 2:
no_cache/danish/123/print.html

The concept of bypassing non-matched values opens the possibility of error if two values from neighbouring configurations
matches. For instance errors would result from having a language labeled “no_cache” since that is a keyword in the
configuration of the first segment!

Removing the “noMatch” setting will yield these URLs instead:
//123/page.html
/danish/123/page.html
no_cache/danish/123/print.html

A better solution would be to set a default value for the language:
 1: 'preVars' => array(
 2: array(
 3: 'GETvar' => 'no_cache',
 4: 'valueMap' => array(
 5: 'no_cache' => 1,
 6:),
 7: 'noMatch' => 'bypass',
 8:),
 9: array(
 10: 'GETvar' => 'L',
 11: 'valueMap' => array(
 12: 'dk' => '1',
 13: 'danish' => '1',
 14: 'uk' => '2',
 15: 'english' => '2',
 16:),
 17: 'valueDefault' => 'uk',
 18:),
 19:),

This would yield this result:
uk/123/page.html
danish/123/page.html
no_cache/danish/123/print.html

It still maintains the bypass-setting for the “no_cache” parameter but that might just fit in nicely.

Example: “fixedPostVars”

 1: 'fixedPostVars' => array(
 2: 'testPlaceHolder' => array (
 3: array(
 4: 'GETvar' => 'tx_extrepmgm_pi1[mode]',
 5: 'valueMap' => array (
 6: 'new' => 1,
 7: 'categories' => 2,
 8: 'popular' => 3,
 9: 'reviewed' => 4,
 10: 'state' => 7,

RealURL - 10

 11: 'list' => 5,
 12:)
 13:),
 14: array(
 15: 'condPrevValue' => '2',
 16: 'GETvar' => 'tx_extrepmgm_pi1[display_cat]',
 17: 'valueMap' => array (
 18: 'docs' => 10,
 19:),
 20:),
 21: array(
 22: 'GETvar' => 'tx_extrepmgm_pi1[showUid]',
 23: 'lookUpTable' => array(
 24: 'table' => 'tx_extrep_keytable',
 25: 'id_field' => 'uid',
 26: 'alias_field' => 'extension_key',
 27: 'addWhereClause' => ' AND NOT deleted'
 28:)
 29:),
 30: array(
 31: 'GETvar' => 'tx_extrepmgm_pi1[cmd]',
 32:)
 33:),
 34: '1383' => 'testPlaceHolder',
 35:),

This configuration shows how “fixedPostVars” can be used like “preVars” but after the page path. Typically it would be used
on a single page where a known plugin runs. In the above example this is the case; page id “1383” is pointed to the
configuration “alias” named “testPlaceHolder”. The example is designed for the typo3.org Extension Repository.

The configuration sets up a sequence of 3-4 segments in the virtual path. The first is the main menu where integer values
defining the mode is mapped to nice alias strings. The second segment is the category id to display but notice how the
“condPrevValue” is set to “2” - this means that only if the previous variable was “2” then will this segment be interpreted,
otherwise bypassed! Finally there is the extension uid, here configured for translation to/from the extension keys. That is a
safe process since the extension keys are unique. Finally the “command” which defines the menu level when displaying
single extensions.

This configuration allows for a URL like this (4 segments in “fixedPostVars” sequence):
http://typo3.org/1383/categories/docs/doc_core_cgl/details/

or (only 3 segments in “fixedPostVars” sequence, since first segment was not “categories” / 2)
http://typo3.org/1383/popular/skin1/details/

->lookUpTable
Defines a table to use for look up in translation of id to alias strings for GETvars.

Key Type Description
table string Table name

id_field string Fieldname of the field holding the id, typically an integer, eg. “uid”

alias_field string Fieldname of the field holding the alias string matched to the id. Should be unique.

addWhereClause string Additional where clause to add to the look up query. Has to be set automatically, even for
“deleted” fields since the lookup might take place before any table configuration is
accessible!
Example value is: “AND NOT deleted”

maxLength integer Defines the maximum accepted length of the alias value. If the alias value is longer than
this integer the original value will be returned instead.
Default value is “100”

useUniqueCache boolean If set, the translation from id to alias is automatically stored in a look-up table where the
uniqueness of the alias is ensured; When storing it is simply checked if the alias is already
associated with another ID (in the same table/fields combination) and if so a unique alias
is created, typically the requested alias with numbers appended.

RealURL - 11

Key Type Description
languageGetVar string Set to the GET variable name that is used to identify language uid (typically “L”). If this is

set, a localized title will be looked up in case the table supports localization with
“languageField” and “transOrigPointerField” set.

For the configuration you HAVE TO duplicate the field names for “languageField” and
“transOrigPointerField” from $TCA of the table. This is because that during URL analysis
the TCA array is not yet available to the system and thus we cannot look the values up
there.

An example is this, using the “tt_news” table in the modern version. See the four bold lines
for an example of the combined configuration needed to make localized urls for news
entries:

'lookUpTable' => array(
 'table' => 'tt_news',
 'id_field' => 'uid',
 'alias_field' => 'title',
 'maxLength' => 50,
 'useUniqueCache' => 1,
 'addWhereClause' => ' AND NOT deleted',
 'languageGetVar' => 'L',
 'languageExceptionUids' => '',
 'languageField' => 'sys_language_uid',
 'transOrigPointerField' => 'l18n_parent'
)

languageField string Same as [ctrl][languageField] in TCA for the look up table.

transOrigPointerField string Same as [ctrl][transOrigPointerField] in TCA for the look up table.

languageExceptionUids string List of sys_language uids to except in case “languageGetVar” is used (see below).

useUniqueCache_conf['strtolower
']

boolean If set, the aliases are converted strtolower()

useUniqueCache_conf['spaceCha
racter']

string Normally, this defaults to an underscore (_), which is used to replace spaces and such in
an URL. You can set this to e.g. a hyphen (-) if you want to.

useUniqueCache_conf['encodeTit
le_userProc']

userFunc Additional processing of the alias before it is cached.

enable404forInvalidAlias boolean If true, a 404 will be thrown if an alias being resolved wasn't found to match and id.

autoUpdate boolean If true, (and useUniqueCache is set) the aliases will automatically update themselves.

expireDays integer Number of days in which older aliases will expire if “autoUpdate” is used. Default is 60
days.

Example

 'lookUpTable' => array(
 'table' => 'user_3dsplmxml_bfsbrand',
 'id_field' => 'xml_id',
 'alias_field' => 'xml_title',
 'maxLength' => 10,
 'addWhereClause' => ' AND NOT deleted'
)

->actionConfig

RealURL - 12

Key Type Description
type string keyword The action is identified by one of these keywords:

“admin” : Enables the Frontend Editing features (similar feature to ->postVarSet, type =
“admin”.
“redirect” : Redirects you to another URL with optional markers filled with the value of
the path segment and the remaining path. Useful for site shortcuts
“notfound” : Throws a 404 error
“bypass” : Bypass AND adds the key to the stack again! (because the key belongs to
next part of URL)
“feLogin” : Adds keyword when users are logged in. Feature that allows different URL
during logins, mainly useful for cache-control headers which needs a different URL for
logged in sessions in order to server non-cached pages for login users. Notice: This
feature will actually check for a logged in user; groups added by IP masks or otherwise
will not be recognized as a login session.

default: Passthrough(without adding key to stack).

Notice about the “_DEFAULT” key: If the “_DEFAULT” type is not “bypass” (meaning
that the _DEFAULT action is to do something) the URL encoding method will look for the
first occurence of an action of no type (passthrough without adding key to stack) and use
that as segment value.

Only type “redirect”
url string The URL to redirect to. There are two markers you can use in the URL:

###INDEX### - Inserts the current segment.
###REMAIN_PATH### - Inserts the remaining path from this point (including any
filename)

The values are rawurlencoded()

Example: Redirects and required prefixes
 1: 'redirects' => array(
 2: '' => 'cms/',
 3: 'mailinglist/' => 'http://lists.netfielders.de',
 4:),
 5: 'preVars' => array (
 6: array(
 7: 'type' => 'action', // "type" action
 8: 'index' => array(
 9: 'cms' => '', // Just bypass
 10: 'admin' => array(
 11: 'type' => 'admin' // Jump BE login OR setting frontend edit flags...
 12:),
 13: 'search' => array(
 14: 'type' => 'redirect', // Redirect...
 15: 'url' => 'index.php?id=1344&tx_indexedsearch[sword]=###REMAIN_PATH###',
 16:),
 17: 'ext' => array(
 18: 'type' => 'redirect', // Redirect...
 19: 'url' => 'cms/1383/list/###REMAIN_PATH###/index.html',
 20:),
 21: '_DEFAULT' => array(
 22: 'type' => 'notfound' // If key was not found in index, throw "404" not
found.
 23:),
 24:),
 25:),
 26:),

In this example the the first segment of the URL is configured to be an action. The segment is required since the “type” of the
“_DEFAULT” index is set to “notfound” meaning that if none of the other keys are matched you will see a “Page not found”
error.

Anyways, the example takes offset in the typo3.org website and this is the consequences of the above configuration:

URL What happens
http://typo3.org/ This URL would result in a 404 error if it wasn't for the redirect configuration in line 1-4 of the

configuration. Here the system is ordered to redirect to “cms/” in case there is no virtual path
found.

http://typo3.org/cms/1420/ This will show page ID 1420. The action key “cms” doesn't do anything - it just bypasses the
processing to the next level which is the page ID resolving. By configuring such a prefix you
basically define all of your site to “run” from the virtual directory “cms/”.
Configuration is in line 9

RealURL - 13

URL What happens
http://typo3.org/admin/1420/ This will also show page ID 1420 but activate the frontend editing icons in the interface - and

if the user is not currently logged in as a backend user a redirect to the backend login form
will happen. Configuration of this feature is in line 10-12

When using the Frontend Editing trigger (“admin”) in RealURL the “admin/” segment of the
path will be carried around in the links on the site so you stay in admin mode until you
remove it again. But this is also means that caching is disabled for all pages so page links
are never stored with the “admin/” action in!

http://typo3.org/search/system+requirement
s

Will redirect to http://typo3.org/index.php?id=1344&tx_indexedsearch[sword]=system
%2Brequirement which is the page where the indexed_search plugin is running and
automatically performing a search for the words after “search/”.
This is configured in line 13-16; notice how the search word (the remaining path) is
automatically inserted in the URL by the marker string “###REMAIN_PATH###”

http://typo3.org/ext/lang Will redirect to http://typo3.org/cms/1383/list/lang/index.html where “lang” is inserted by the
marker “###REMAIN_PATH###” just like with the “search” action before. The principles are
the same. Configuration in line 17-20

http://typo3.org/mailinglist/ Will redirect to http://lists.netfielders.de according to line 3 in the configuration

Example: Language prefix and “admin” action
 1: 'preVars' => array (
 2: array(
 3: 'type' => 'action', // "type" action
 4: 'index' => array(
 5: 'admin' => array(
 6: 'type' => 'admin' // Jump BE login OR setting frontend edit flags...
 7:),
 8: 'search' => array(
 9: 'type' => 'redirect', // Redirect...
 10: 'url' => 'index.php?id=1344&tx_indexedsearch[sword]=###REMAIN_PATH###',
 11:),
 12: 'ext' => array(
 13: 'type' => 'redirect', // Redirect...
 14: 'url' => 'cms/1383/list/###REMAIN_PATH###/index.html',
 15:),
 16: '_DEFAULT' => array(
 17: 'type' => 'bypass' // If key was not found in index, throw "404" not found.
 18:),
 19:),
 20:),
 21: array(
 22: 'GETvar' => 'L',
 23: 'valueMap' => array(
 24: 'dk' => '1',
 25:),
 26: 'noMatch' => 'bypass',
 27:),
 28:),

In this example two preVars are configured, the first is an action containing almost the same actions as the previous example
except that the “_DEFAULT” configuration is of the “bypass” type which means that if none of the key matches the first
segment the interpreter will simply move on to the next preVar configuration for that segment (bypassing and adding
segment value to stack again).

In addition there is a language prefix configured as well.

The result of this configuration should be clear from looking at the examples in the following table:

URL What happens
http://typo3.org/1420/ Shows page 1420

http://typo3.org/admin/1420/ Shows page 1420 with Frontend Editing icons

http://typo3.org/dk/1420/ Shows page 1420 in danish (&L=1)

http://typo3.org/admin/dk/1420/ Shows page 1420 in danish (&L=1) with Frontend Editing icons

Example: feLogin passthrough
This configuration will make “loginarea/” a prefix in all URLs used when a frontend user is logged in. In itself the prefix does
nothing; it sets no parameter internally. But it can be crucial for cache-control because it allows you to send cache-headers to
the client browser for all pages where no user is logged in while all login pages are associated with another URL (the main
URL prefixed with this keyword) for which you can set no-cache headers.

Example configuration:
'preVars' => array(

array(

RealURL - 14

'type' => 'action',
'index' => array(

'loginarea' => array(
'type' => 'feLogin'

),
'_DEFAULT' => array(

'type' => 'bypass'
)

)
),

->pagePath
Configuration of the method that en/decodes the id to/from a “page path”

Key Type Description
type string Setting the method used for encoding/deconding of the ID

The default simply is to set the page id/alias as a single entry in the virtual path.

“user” : Calls external class for generation.

Only type “user”:
userFunc function reference Function reference to handle the id encoding.

Examples can be found in class.tx_realurl_dummy.php

An full fledged implementation is found in “class.tx_realurl_advanced.php”. See more
details later in documentation about this.
Example value:

EXT:realurl/class.tx_realurl_advanced.php:&tx_realurl_advanced->main

rootpage_id integer Defines the root page uid of the site for which the configuration is made.

This setting is mandatory if you run multiple sites in the same database using real urls for
more than one site. This setting makes possible for the “path-to-id” algorithms to
distinguish the sites. For instance two sites might have the same page title on the first
level that will generate the same speaking url path. In such case two different IDs are
associated with the same page path and something is needed to distinguish the look ups.

In order to configure different sites you simply use the possibility to make different
configuration for different domains. See the main section about configuration.

It is important that you use the uid of the root page in the sites. Otherwise the fall-back
look up of page paths will not work correctly.

You do not need to set this setting if you have only one site in realurl configuration.

See example in the tx_realurl_advanced section.

[other keys can
depend on user
functions.]

Example of page id translation to path:
 'pagePath' => array(
 'type' => 'user',
 'userFunc' => 'EXT:realurl/class.tx_realurl_advanced.php:&tx_realurl_advanced->main',
 'spaceCharacter' => '-',
 'languageGetVar' => 'L',
 'expireDays' => 30
),

Calls a user function which will render a true Speaking URL of the page titles and not just output the page id numbers. See a
thorough description of this class later in this document, chapter “class.tx_realurl_advanced.php”

By the configuration above URLs will look like this (before / after):
1420/index.html
extensions/index.html
1420/repository/popular/skin1/details/index.html
extensions/repository/popular/skin1/details/index.html
1440/index.html
documentation/glossary/index.html
1409/index.html
about/license/gpl-for-developers/index.html
1342/showreference/52/

RealURL - 15

about/yet-another-typo3-site/showreference/52/

Example of dummy setup:
 'pagePath' => array(
 'type' => 'user',
 'userFunc' => 'EXT:realurl/class.tx_realurl_advanced.php:&tx_realurl_dummy->main',
),

Calls a dummy class which does exactly what the main class does: Outputs the page id/alias and nothing more. But if you
want to implement your own schemes this class is a useful offset for you!

->postVarSet
Key Type Description

type string keyword By default a postVarSet consists of
● a keyword that identifies the following sequence in the virtual path
● a sequence of one or more segments in the path which is mapped to GETvars
An example (from previously) is “news/list/456/” where the keyword “news/” (first segment)
identifies the following sequence (“list/456/”) to be mapped to the GET-vars
tx_mininews[mode] and tx_mininews[showUid] respectively (according to configuration).
The configuration of the sequence is done by a numeric array of ->partDef.

Other modes:
There are other modes than the default mode and they can be triggered by setting the
“type” key to one of the following keywords. In these alternative cases there might not be
any sequence of segments after the keyword, but still the keyword is triggering the
alternative mode so that will always be around.

“single” : Using this keyword you bind the keyword to represent an exact amount of
GETvars with exact values. This works precisely like filenames are bound to GETvars
(see ->fileName)

“admin” : Using this keyword the backend will enable frontend editing mode for the user,
showing the context sensitive edit icons in the frontend. If the user is not logged in as a
backend user there will be a redirect to the backend login form where the user can login
and after successful login the user will be redirected to the previous page.

Only default type:
[0..x] ->partDef The configuration of the sequence associated with the “keyword” that defines this

postVarSet.

Only “single” type:
keyValues array of [GETvar] => [string

value]
The “keyValues” array defines one or more GET variables with specific values. The
keyword of the postVarSet is matched if if all the GET-vars configured in [“keyValues”] is
found in the remaining pool of GET vars that needs translations and if the values match
exactly!

Example: Frontend edit

 1: 'postVarSets' => array (
 2: '_DEFAULT' => array(
 3:
 4: 'edit_now' => array(
 5: 'type' => 'admin'
 6:)
 7:),
 8:)

Adding lines 4-6 in the above codesnippet to the postVarSets of a configuration will enable frontend edit mode if users
append “.../edit_now/” to the virtual path. Of course you can choose any “admin-directory” you like.

One warning here; If the keyword is appended to a URL where a previous postVarSet sequence is not yet finished then the
keyword will of course be seen as a parameter of that postVarSet and not as the keyword triggering the frontend edit mode
as you wanted. Therefore you might want to use the same feature but for pre-vars instead.

Example: PostVarSets

 1: 'postVarSets' => array(

RealURL - 16

 2: '_DEFAULT' => array (
 3: 'plaintext' => array(
 4: 'type' => 'single', // Special feature of postVars
 5: 'keyValues' => array (
 6: 'type' => 99
 7:)
 8:),
 9: 'ext' => array(
 10: array(
 11: 'GETvar' => 'tx_myExt[p1]',
 12:),
 13: array(
 14: 'GETvar' => 'tx_myExt[p2]',
 15:),
 16: array(
 17: 'GETvar' => 'tx_myExt[p3]',
 18:),
 19:),
 20: 'news' => array(
 21: array(
 22: 'GETvar' => 'tx_mininews[mode]',
 23: 'valueMap' => array(
 24: 'list' => 1,
 25: 'details' => 2,
 26:)
 27:),
 28: array(
 29: 'GETvar' => 'tx_mininews[showUid]',
 30:),
 31:),
 32:),
 33:),

This example shows how three sets of postVarSets has been configured of which two of them are the default type (keyword +
sequence of GETvars) while the third is of the “single” type, mapping to a fixed GETvar value.

In order to understand this configuration and the effect it has you should study these commented examples based on the
above configuration. Each example consists of two lines where the first is the URL with GETparameters and the second is
the Speaking URL version of the first.

index.php?id=123&tx_myExt[p3]=ccc&tx_myExt[p2]=bbb&tx_myExt[p1]=aaa
123/ext/aaa/bbb/ccc/

Above, the postVarSet “ext” is used to encode the GET parameters. The sequence is initiated by the keyword “ext” and the
following three segments of the virtual path is mapped to the three GET-vars configured for the keyword and in the order they
appear in the configuration above (line 10-18)

index.php?id=123&tx_myExt[p1]=aaa
123/ext/aaa/

index.php?id=123&tx_myExt[p1]=aaa&tx_myExt[p2]=bbb
123/ext/aaa/bbb/

The above two examples shows what happens if only one or two of the parameters are used - basically the empty values are
stripped off from the end of the path. The first example would actually render “123/ext/aaa///” and the second would be
“123/ext/aaa/bbb//” but since the empty values are in the end of the path we can safely strip them off as the example shows.

index.php?id=123&tx_myExt[p1]=aaa&tx_myExt[p3]=ccc
123/ext/aaa//ccc/

In this example only “tx_myExt[p1]” and “tx_myExt[p3]” is used and since the sequence requires “p2” to be in between we
have to accept the empty segment of the virtual path.

index.php?id=123&tx_mininews[showUid]=123&tx_mininews[mode]=1
123/news/list/123/

In the above example the mininews parameters are encoded, using the keyword “news”. Notice that the “tx_mininews[mode]”
GETvar has a mapping table which allows automated translation between the value “1” and “list” used in the virtual URL. This
feature (and other similar options) allows to create truely speaking URLs even for parameters that are ID numbers.

RealURL - 17

index.php?
id=123&tx_mininews[showUid]=123&tx_mininews[mode]=1&tx_myExt[p1]=aaa&tx_myExt[p2]=bbb&tx_myExt[p3]=ccc
123/ext/aaa/bbb/ccc/news/list/123/

In this example we have two postVarSets, namely “ext” and “news”. As you can see this is no problem at all as long as the
sequences contains the correct amount of segments so the next keyword gets registered.

Notice that the “ext” keyword gets listed first. This is because the “ext” postVarSet is the first one found in the configuration
and therefore is triggered before the “news” postVarSet.

index.php?id=123&tx_mininews[showUid]=123&tx_myExt[p1]=aaa&tx_myExt[p3]=ccc
123/ext/aaa//ccc/news//123/

In this example we have left out two parameters from the previous URL and that means there are two empty segments in the
virtual path. There is no way around this since the sequence length has to be respected and in case of the “news” postVarSet
the “mode” was defined before the “showUid” parameter which means it is not possible to strip of the the empty value.

index.php?id=123&type=99&tx_myExt[p1]=aaa&unknownGetVar=foo
123/plaintext/ext/aaa/?unknownGetVar=foo

This example is only different to the above examples by showing what happens to an unknown GET var when a URL is
encoded; quite simply that GET var is appended to the final URL - what else!

->fileName
Configuration of the significance of the filename in the virtual path.

Key Type Description
index[filename][“keyValues”] array of

[GETvar] =>
[string value]

The “index” is an array of virtual filenames (eg. “page.html”) which is associated with one
or more GET variables with specific values.
A filename is chosen during encoding if all the GET-vars configured in index[filename]
[“keyValues”] is found in the remaining pool of GET vars that needs translations and if the
values match exactly!
The filename value “_DEFAULT” is used if no match was found.

Important: The order in which the filenames occur is of great importance since the first
filename that matches will be chosen. You should arrange the filenames strategically. See
example below.

defaultToHTMLsuffixOnPre
v

boolean/string If set, then the last directory part of the virtual path being made will be turned into the
filename suffixed “.html” IF the filename part is non-existing.

For example, “workplace-learning-solutions/companion-solutions/” would be turned into
“workplace-learning-solutions/companion-solutions.html” and the basepart of the filename
(stripping the “.html” extension) will still be perceived as the last part of the virtual path.
This approach is useful if you want to simulate HTML documents even if you don't
configure any fileName mappings.

If set to string, that string will be used as suffix. Notice that leading dot is mandatory (i.e.
valid suffix is “.html”, not just “html”)

acceptHTMLsuffix boolean/string If URL contains “.html” suffix and this property is enabled, then this suffix will be stripped
from url. This allows you to easily migrate old site to TYPO3, keep all incoming external
links working but use urls with another suffix (through defaultToHTMLsuffixOnPrevid is) or
without suffix at all.

Example: Multiple filenames for a frameset
 1: 'fileName' => array (
 2: 'index' => array(
 3: 'print.html' => array(
 4: 'keyValues' => array (
 5: 'print' => 1,
 6: 'type' => 1,
 7:)
 8:),
 9: 'page.html' => array(
 10: 'keyValues' => array (
 11: 'type' => 1,
 12:)
 13:),
 14: 'top.html' => array(
 15: 'keyValues' => array (
 16: 'type' => 2,
 17:)
 18:),
 19: '_DEFAULT' => array(
 20: 'keyValues' => array(

RealURL - 18

 21:)
 22:),
 23:),
 23: 'acceptHTMLsuffix' => '.cfm'
 24:),
This example could be configuration for a frames-based website. When there should be no “type” value the default key is
used (which renders no filename of course) but if the &type value is 1 or 2 either “page.html” or “top.html” is used; those
filenames will then represent the GET var “&type=1” and “&type=2” respectively during decoding.

Also notice how the “&print=1” parameter has been encoded into a filename! The idea is that if the filename is “print.html”
then two GET vars are set; both “&type=1” and “&print=1”. But you must be very careful how you arrange the filenames; if
“print.html” was entered below “page.html” then it would never be used since the first match wins and “page.html” would be
found to match exactly with “&type=1” and thus the “&print=1” GET var would be appended the URL (like “page.html?
print=1”) instead of being encoded into the filename (“print.html”).

Example: Default filename
 'fileName' => array (
 'index' => array(
 'index.html' => array(
 'keyValues' => array(
)
),
),
),

This example shows a configuration that will prefix the filename “index.html” by default no matter what.

Handling relative links with Speaking URLs
By default, TYPO3 generates all links to other pages as www.server.com/index.php?id=123&type=0, so all pages seem to be
in one (filesystem-) directory: the root of the website. The problem is, that many extensions (and TYPO3 core code) rely on
images, javascripts, etc. to be in a directory relative to the TYPO3-root, like “typo3/ext/indexed_search/pi/res/pages.gif”. This
approach doesn't work when the path is constantly changing.

For example, a file “fileadmin/my_image.jpg” referenced from “index.php?id=123” will be found because “index.php” is in the
root of the website where also the “fileadmin/” folder is. But as soon as the URL “index.php?id=123” is encoded into a
Speaking URL, say “contact/company_address/”, then your browser will try to find the image in
“contact/company_address/fileadmin/my_image.jpg” where is obviously isn't located.

So to solve this problem you

1. either have to prefix all relative references with an absolute path to the site root

2. or set the <base> tag in the HTML files header to the site root.

config.absRefPrefix
There is a TypoScript-setup directive to set an absolute prefix to all links and images (config.absRefPrefix), but sadly enough
that isn't implemented in all places (the indexed-search and front-end-editing for example), so that doesn't work too well.

Please don't use config.absRefPrefix. It has some nasty properties that render RealURLs complete unusable sometimes.
The only problem is that the 404-page of TYPO3 doesn't have the <base>-tag, so it doesn't show the TYPO3-logo :)

Support for this might be allowed when the bugs are fixed but generally it will require all code generating reference to use this
method and that cannot be guaranteed for all extensions of course.

<base> tag
There is a very simple solution in HTML though: just supply the <base>-tag in the <head> of your pages, like:

<base href="http://your.domain.com/">

To make your TypoScript templates RealURL-enabled, you should therefore include this statement in your HTML-templates,
or use the following TypoScript snippet:
config.baseURL = http://your.domain.com/

This will automatically read what the current base URL is on your website (using t3lib_div::getIndpEnv('TYPO3_SITE_URL'))
and create a <base> tag in the header of the HTML output in the frontend.

The <base> tag method seems to work flawlessly in TYPO3 except in two cases where you have a link like - this will not work because it refers to the site root but obviously is an 'internal' reference in the
current document.

However you can solve this situation in a simple way:
config.prefixLocalAnchors = all

This will set the needed prefix for all occurencies of '<a href=”#....”....' in the page; basically anywhere a local anchor is
generated. This substitution happens by a ereg_replace on the general page content after rendering. See TSref for details.

RealURL - 19

http://your.domain.com/
http://www.server.com/index.php?id=123&type=0

The other situation is specific for MSIE; When you set the "document.location" via JavaScript, MSIE will understand relative
URLs as relative to the current URL, not the <base> URL. Therefore you will have to prefix the base URL. You can find that
value in $GLOBALS['TSFE']->baseUrl (or use t3lib_div::getIndpEnv("TYPO3_SITE_URL")).

Making extensions compatible with “config.baseURL”
If you set “config.baseURL” and subsequently “config.prefixLocalAnchors = all” then extensions might still produce wrong
local anchors. That is if extensions are including un-cached page content by USER_INT or USER_EXT cObjects that content
is not processed! (unless “config.prefixLocalAnchors” is set to “output”). For such extensions there should be inherent
support for RealURL and that can be done (with full backwards compatibility) by prefixing all local anchors made by the result
of this:
substr(t3lib_div::getIndpEnv('TYPO3_REQUEST_URL'),strlen(t3lib_div::getIndpEnv('TYPO3_SITE_URL')));

or in recent TYPO3 versions:
$GLOBALS['TSFE']->anchorPrefix

Generally
Make sure you include either configuration it in ALL page-types that are generated!

RealURL - 20

class.tx_realurl_advanced.php
Introduction
The class tx_realurl_advanced offers advanced encoding of page IDs to paths including encoding in localized titles and
cache management.

Configuration
You should create Domain-records on the pages where domains start. Even if you only have one domain, it's a good idea to
create a Domain-record for it. There's one thing you should note:

If you have installed TYPO3 in the document-root of a host, you should create a domain-record named like 'www.server.com'.
If, on the other hand, your TYPO3-installation is in a different directory, you should create a domain-record named something
like 'www.server.com/the_path_to_your_typo'. Slashes at the end don't matter that much.

Configure RealURL to work with “tx_realurl_advanced” ID encoding

Simply set this configuration for the key “pagePath” in the configuration array:

 'pagePath' => array(
 'type' => 'user',
 'userFunc' => 'EXT:realurl/class.tx_realurl_advanced.php:&tx_realurl_advanced->main',
 'spaceCharacter' => '-',
 'languageGetVar' => 'L',
 'expireDays' => 30
),

The directives specific for “tx_realurl_advanced” are these:

RealURL - 21

http://www.server.com/the_path_to_your_typo
http://www.server.com/

Directive: Data Type: Description:
languageGetVar string Defines which GET variable in the URL that defines language id; if set the path will take this language

value into account and try to generate the path in localized version.

languageExceptio
nUids

string Commalist of UIDs of sys_language records which will not generate a localized URL if languageGetVar
is set.

spaceCharacter Normally, this defaults to an underscore (_), which is used to replace spaces and such in an URL. You
can set this to e.g. a hyphen (-) if you want to.

segTitleFieldList list of
fieldnames

The prioritized order of field names from pages table (root line !) that is used when building the speaking
URL.

Default is “tx_realurl_pathsegment,alias,nav_title,title” (for Alternative Page Language records this is
only “nav_title, title”).

Notice: If you specify user defined fields which are not currently in root line you will have to add them to
the root line via “$GLOBALS['TYPO3_CONF_VARS']['FE']['addRootLineFields']”

disablePathCach
e

boolean Will disable the usage of path cache. The system will rely solely on forward-lookups on the fields in
"segTitleFieldList".

autoUpdatePathC
ache

boolean (Depends on “disablePathCache” being false!)

If set, the URLs will automatically update themselves after changes to the page title, alias and other
fields specified in”segTitleFieldList” and keep track of older values for a period of time corresponding to
“expireDays” (see below).

The cost of this feature is that the pathCache is not used for speedy lookups but used for tracking these
URLs instead. Thus, performance wise it corresponds to setting “disablePathCache” to zero.

expireDays integer The time the old URL of a page whose pagetitle changed will still be remembered (in days). See
“autoUpdatePathCache” above. Default is 60 days.

firstHitPathCache boolean If set, then the path-cache look up is accepted only if it returns a result in the first hit. In versions prior to
1.4 this will prevent "was not set as postVarSet as expected" error but at a cost of extra database
lookups. Since version 1.4 it is not longer needed to set this option to prevent that error but option is
kept for compatibility reasons.

rootpage_id integer This setting is critical for proper functioning of tx_realurl_advanced in the multi domain environment. Its
description can be found in ->pagePath section. In versions prior to 1.0.1 it was specific to
tx_realurl_advanced but now it is a realurl setting.

See example below.

encodeTitle_user
Proc

user function Additional user processing in “encodeTitle()”.

dontResolveShort
cuts

boolean If set, page shortcuts are not resolved to their destination page.

NB: If you do not set this option the backends Speaking URL Management module will probably report
duplicate entries in the pathCache table since both the shortcut page and the destination page will have
the same URL entry. The error is in that case not a real problem of course, but annoying to the eye.

excludePageIds string Comma list of page ids to exclude from being RealURL rendered. The list must NOT contain any
spaces between page id numbers!

Example: Configuration of RealURL for use on more than one domain in the same database

 1: $TYPO3_CONF_VARS['EXTCONF']['realurl'] = array(
 2: '_DEFAULT' => array(
 3: 'pagePath' => array(
 4: 'type' => 'user',
 5: 'userFunc' => 'EXT:realurl/class.tx_realurl_advanced.php:&tx_realurl_advanced->main',
 6: 'rootpage_id' => 437
 7:),
 8:),
 9: 'www.test1.intra' => array(
 10: 'pagePath' => array(
 11: 'type' => 'user',
 12: 'userFunc' => 'EXT:realurl/class.tx_realurl_advanced.php:&tx_realurl_advanced->main',
 13: 'rootpage_id' => 111
 14:),
 15:)
 16:);
Notice how the rootpage_id field is set differently for these two cases!

RealURL - 22

Automatic configuration
Overview
Since version 1.4 RealURL has automatic configuration option. It checks the system and attempts to write configuration file
to simplify work for user. Such check if done is user did not specify configuration manually. While RealURL tries to make
optimal configuration, it does it for most common cases. If your host needs specific settings, you should either write
configuration manually or modify generated configuration.

RealURL will create configuration for each domain and for each language defined in the system. To create language
configuration it requires static_tables extension. static_tables is suggested during installation of RealURL. If you do not plan
to use automatic configuration or you have only one language, you can skip static_tables.

RealURL may store generated configuration in one of two formats: PHP serialized array or source PHP code. These options
are offered during extension installation. The first option is at least 10 times faster (may be less with PHP accelerator) and it
should be used in production environment. However serialized arrays cannot (and must not be under any conditions!)
modified manually. Serialized array may stop working after you upgrade PHP version, though this happens really rare. In any
case, use the second option only if:

● you plan to modify generated configuration

● you plan to update to newer PHP version really soon

Important: configuration is generated only once. If you add domain or new language to the system, automatic configuration
will not be updated. You have to delete a file in typo3conf/ directory named realurl_autoconf.php. RealURl will
regenerate configuration if this file does not exist.

If you use manual configuration, you can disable autogeneration by clearing a checkbox while installing extension. This will
save you a couple of milliseconds.

Automatic configuration of extensions
Extensions can alter generated RealURL configuration to suit there needs. Notice that it is done only once when
configuration is generated. If you install and extension that supports autogeneration, you need to delete a file in typo3conf/
directory named realurl_autoconf.php. RealURl will regenerate configuration if this file does not exist.

To add/modify RealURL configuration, extensions must provide a hook to RealURL. This hook will be called once and
receive RealURL configuration as array. This array is a template, not a final configuration. RealURL will use this array to
generate separate set of arrays for each domain. Think about this array as about _DEFAULT entry in RealURL
confuiguration.

The following code example from album3x extension shows how to set such hook in locaconf.php:
// RealURL autoconfiguration
$GLOBALS['TYPO3_CONF_VARS']['SC_OPTIONS']['ext/realurl/class.tx_realurl_autoconfgen.php']
['extensionConfiguration']['album3x'] = 'EXT:album3x/class.tx_album3x_realurl.php:tx_album3x_realurl-
>addAlbum3xConfig'

Here is an example of the hook from album3x extension:
class tx_album3x_realurl {

/**
 * Generates additional RealURL configuration and merges it with provided configuration
 *
 * @param array $params Default configuration
 * @param tx_realurl_autoconfgen $pObj Parent object
 * @return array Updated configuration
 */
function addAlbum3xConfig($params, &$pObj) {

return array_merge_recursive($params['config'], array(
 'postVarSets' => array(

'_DEFAULT' => array(
'page3x' => array(

array(
'GETvar' =>

'tx_album3x_pi1[page]',
),

),
'image3x' => array(

array(
'GETvar' =>

'tx_album3x_pi1[showUid]',
'userFunc' =>

'EXT:album3x/class.tx_album3x_realurl.php:&tx_album3x_realurl->main',
),

),
))));

}
}

RealURL - 23

Important note: try to invent preVar, postVar and fixedPostVar names that do not conflict with other extensions. Since
variable names should look good in the URL, choice is limited and conflicts may occure. For example, mininews extension
try to prevent conflict with tt_news by changing postVar name if tt_news is installed:
class tx_mininews_realurl {

/**
 * Generates additional RealURL configuration and merges it with provided configuration
 *
 * @param array $params Default configuration
 * @param tx_realurl_autoconfgen $pObj Parent object
 */
function addMininewsConfig($params, &$pObj) {

$postVar = (t3lib_extMgm::isLoaded('tt_news') ? 'mnews' : 'news');
return array_merge_recursive($params['config'], array(

'postVarSets' => array(
'_DEFAULT' => array(

$postVar => array(
 'GETvar' =>

'tx_mininews_pi1[showUid]'
)

)
)

));
}

}

Appendix
mod_rewrite notice from Ole Tange, www.fi.dk
When using RealUrl you will need a rewrite rule in .htaccess (or apache.conf) that rewrites the path to index.php. This will do
that:

 RewriteRule .* /index.php

However, Apache should not rewrite documents located in /typo3/, /uploads/, /fileadmin/ and /typo3conf/:

 RewriteRule ^typo3/.*$ - [L]
 RewriteRule ^uploads/.*$ - [L]
 RewriteRule ^fileadmin/.*$ - [L]
 RewriteRule ^typo3conf/.*$ - [L]

Also /typo3 (without trailing '/') should not be rewritten:

 RewriteRule ^typo3$ - [L]

If you have a PDF-file that you want to give a nice URL (e.g. www.example.com/project-name/report.pdf) you would want to
put it in /project-name/. Therefore files that do exist should not be rewritten either:

 RewriteCond %{REQUEST_FILENAME} !-f

If you use a symlink to the file then this should not be rewritten either:

 RewriteCond %{REQUEST_FILENAME} !-l

If www.example.com/project-name is not a file then it should be considered as a directory so that a relative link to
'background' will be a link to www.example.com/project-name/background and not to www.example.com/background

To force this you simply append a '/' to the url if it is not a file:

 RewriteRule (.*[^/])$ http://%{HTTP_HOST}/$1/ [L,R]

This works by redirecting the browser from www.example.com/project-name to www.example.com/project-name/

If in the directory project-name there is an index.html we should use that instead of Typo3:

RealURL - 24

 RewriteCond %{REQUEST_FILENAME}/index.html -f
 RewriteRule / %{REQUEST_URI}/index.html [L]

The same goes for index.htm and index.php:

 RewriteCond %{REQUEST_FILENAME}/index.htm -f
 RewriteRule / %{REQUEST_URI}/index.htm [L]
 RewriteCond %{REQUEST_FILENAME}/index.php -f
 RewriteRule / %{REQUEST_URI}/index.php [L]

The resulting .htaccess looks like this:

 RewriteEngine On
 RewriteRule ^typo3$ - [L]
 RewriteRule ^typo3/.*$ - [L]
 RewriteRule ^uploads/.*$ - [L]
 RewriteRule ^fileadmin/.*$ - [L]
 RewriteRule ^typo3conf/.*$ - [L]

 RewriteCond %{REQUEST_FILENAME} !-f
 RewriteCond %{REQUEST_FILENAME} !-l
 RewriteRule (.*[^/])$ http://%{HTTP_HOST}/$1/ [L,R]
 RewriteCond %{REQUEST_FILENAME}/index.html -f
 RewriteRule / %{REQUEST_URI}/index.html [L]

 RewriteCond %{REQUEST_FILENAME}/index.htm -f
 RewriteRule / %{REQUEST_URI}/index.htm [L]
 RewriteCond %{REQUEST_FILENAME}/index.php -f
 RewriteRule / %{REQUEST_URI}/index.php [L]
 RewriteCond %{REQUEST_FILENAME} !-f
 RewriteCond %{REQUEST_FILENAME} !-l
 RewriteRule .* /index.php

Please note that the order is important. Changing the order will most likely give undesired results.

Using httpd.conf for setting it up, a tip from Stefan Bühler (copy-paste from bugtracker)

 I now have a solution for htttpd.conf:

 RewriteRule ^/(typo3|typo3temp|typo3conf|t3lib|tslib|fileadmin|uploads|showpic\.php)(/.*)?$ - [L]
 RewriteCond %{REQUEST_FILENAME} !-f
 RewriteCond %{REQUEST_FILENAME} !-d
 RewriteCond %{REQUEST_FILENAME} !-l
 RewriteRule ^/(.*)$ /index.php [L,E=ORIG_SCRIPT_NAME:/index.php]

 This sets the environment variable "ORIG_SCRIPT_NAME" to "/index.php" which Typo3 uses (if present)
instead of "SCRIPT_NAME".
 "SCRIPT_NAME" is only changed to this if you use .htaccess with RewriteBase, and it is not possible (as
far as i know and tried) to change this from httpd.conf.
 If your Typo3 is reachable e.g. at http://host/path-to-typo3/, [^] you would change the RewriteRule to:
 RewriteRule ^/(.*)$ /index.php [L,E=ORIG_SCRIPT_NAME:/path-to-typo3/index.php]

ToDo list
- For technical todo list see “doc/TODO.txt” in the extension

● Some clever 404 page can be created, using the builtin indexed-search for example. The requested language (/nl/...)
could help to provide the page in the requested language. Nothing done with this yet though.

Changelog
• 0.0.1: First upload

• 0.0.4: First working version

• 0.0.5: An icon was added, thanks to Netcreaters for creating it!

RealURL - 25

• 0.0.6: Documentation in StarOffice format added

• 0.0.7: Almost complete rewrite / revision of the code, implemented '/path_to_typo'-feature, implemented support for
multiple domains, changed the code so that most of the configuration is now automatic, updated documentation

• 0.1.0: First publicly available version

• 0.1.1: pathPrefix didn't work correctly, so a hack was added to allow it too work now

• 0.1.2: URLs in pages weren't rendered correctly on single-language-sites

• 0.1.3: Added possibility to choose another character to replace a space (instead of an underscore), fixed another stupid
bug regarding the rendering of some URLs

• TOTAL re-organization by Kasper Skårhøj march 2004

• See Changelog file inside extension (standard CVS changelog)

RealURL - 26

	RealURL
	Introduction
	What does it do?
	Examples
	Background

	Features

	Configuration
	Installation
	Install the extension
	Configure Apache
	TypoScript configuration
	Configure the extension

	URL en/decoding background
	The syntax of a “Speaking URL”

	Configuration directives
	$TYPO3_CONF_VARS['EXTCONF']['realurl']
	Example

	->siteCfg
	Example structure

	->init
	->partDef
	Example:
	Example: “fixedPostVars”

	->lookUpTable
	Example

	->actionConfig
	Example: Redirects and required prefixes
	Example: Language prefix and “admin” action
	Example: feLogin passthrough

	->pagePath
	Example of page id translation to path:
	Example of dummy setup:

	->postVarSet
	Example: Frontend edit
	Example: PostVarSets

	->fileName
	Example: Multiple filenames for a frameset
	Example: Default filename

	Handling relative links with Speaking URLs
	config.absRefPrefix
	<base> tag
	Making extensions compatible with “config.baseURL”
	Generally

	class.tx_realurl_advanced.php
	Introduction
	Configuration
	Configure RealURL to work with “tx_realurl_advanced” ID encoding
	Example: Configuration of RealURL for use on more than one domain in the same database

	Automatic configuration
	Overview
	Automatic configuration of extensions

	Appendix
	mod_rewrite notice from Ole Tange, www.fi.dk
	Using httpd.conf for setting it up, a tip from Stefan Bühler (copy-paste from bugtracker)

	ToDo list
	Changelog

